
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Jello Shape Simulation
Benjamin Kenwright1*

Abstract
This practical focuses on simple particle constraint mechanics (e.g., Newton’s laws, Hooke’s law, distance constraints, collision
detection). The student needs to implement a real-time interactive ’jello shape’ using Newtonian mechanics (e.g., forces and
penalty constraints). When the ’jello shape’ is stretched, it will try to contract, when squeezed together, it will tend to inflate
back to the original form. As with the previous practicals, you will also create an interesting animation demonstrating your
results.

Keywords
Newtonian Mechanics, Hooke’s Law, Springs, Particles, Constraints, Soft-Bodies, Classical Mechanics

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Contents

Introduction 1

1 Overview 1

2 Mass-Spring System 1

3 How to Organize the Network (Jello Shape) 2

4 Engineering Design Tips 4

5 Summary 4

6 Exercises 4

Acknowledgements 4

Introduction
Particle Constraints The topic of this practical is the imple-
mentation of a real-time particle constraint simulation (i.e., an
interconnected set of particle bodies). The user should be able
to interact with the simulation while it is running (e.g., through
the mouse or keyboard) to control the ‘jello shape’ - such as
push or pull the object around. The ‘jello shape’ should be
implemented using classical mechanic principles (e.g., Euler
integration, Hooke’s law for distance constraint, and sphere-
plane collision detection for the ground). The deformable
shape will stretch, contract, oscillate, change velocity, bounce
off walls using the physical laws for a mass-spring system.

Tasks
1. Visually display an interconnected ‘jello shape’
2. Interconnect the point-mass ‘jello shape’ using a spring-

damper structure
3. User input (e.g., mouse or keyboard) to control and

move the ‘jello shape’ around
4. ‘Jello shape’ should be under the influence of grav-

ity and come to rest on the ground (i.e., sphere-plane
collision detection)

1. Overview
Principles and Concepts Remember that, at this point, a
particle physics system is still dealing with forces and masses
- the challenge is implementing a system which is stable and
computationally efficient enough to run at interactive frame
rates.

3D Chunk of Jello You will model a 3D chunk of jello,
which, when un-deformed, has the shape of a cube of a specific
dimension (e.g., 1 meter x 1 meter x 1 meter). The cube will
stretch, contract, oscillate, change velocity, bounce off the
ground and walls of the virtual environment, based on the
physical laws for a mass-spring system. The jello shape will
stay inside a viewable region (e.g., constrain the jello shape
to move within a bounding box). When the jello shape hits a
wall or the ground, it should bounce off and move backwards.

You will model the movement of the jello shape by nu-
merically solving a system of ordinary differential equations,
which sounds perhaps a bit scary, but is actually not that diffi-
cult. The equations to be solved incorporate Newton’s second
law (~f = m~a), Hook’s linear model of elasticity (~f = k~x), and
linear damping (~f =−k~v).

2. Mass-Spring System
We begin by reviewing the necessary principles and theory.
A mass-spring system is the connection of several point-
masses. Each point-mass is connected to each other by springs.
Springs expand and stretch, exerting force on the connected
point-masses. A common simulation example exploiting
springs is cloths and soft-bodies.

Newton’s Law At the heart of the mass-spring system is
Newton’s 2nd law as given below in Equation 1:

~F = m~a (1)

Workshop Series: Jello Shape Simulation — 2/5

where ~F is the net force, m is the mass, and~a is the accelera-
tion. Newton’s second law tells us how to compute acceler-
ation given the object’s force and mass, while Newton’s 3rd
law tells us the reaction force - i.e., if object A exerts a force
~F on object B, then object B is at the same time exerting force
−~F on A.

Single Spring & Hooke’s law Assume ~A and ~B are two
mass points connected with a spring. The elastic force exerted
on A is given below in Equation 2:

~FHooke =−ks(|~L|−R)
~L
|~L|

=−ks(|~L|−R) L̂

(2)

where L be the vector pointing from B to A, R is the spring
rest length, and ks is the spring elasticity (aka stiffness). We
can deduce when |~L|< R the spring will want to extend, while
when |~L|> R the spring will want to contract.

Figure 1. Spring Illustration - Connected particle
parameters.

Damping In reality, springs are not completely elastic and
absorb energy and tend to decrease the velocity of the mass
points attached to them. Damping force depends on the veloc-
ity and are defined by Equation 3 below:

~FDamping =−kd~v (3)

where kd is the damping coefficient.
For an uncomplicated 3D spring - if we assume A and B

two connected mass points the damping force exerted on A is
given by Equation 4:

~FDamping =−kd
(~vA−~vB)•L
|~L|

~L
|~L|

=−kd((~vA−~vB)• L̂) L̂

(4)

where L is the vector pointing from B to A, vA and vB are
velocities of points A and B. It’s important to remember, a
damping force is always opposes the direction of motion (i.e.,
negative sign).

Network of Springs For a cloth spring-damper simulation
(see Figure 2) every mass point is connected to some other
points by springs (i.e., each spring represents a distance con-
straint using Hooke’s force and damping). We can also include
additional external forces, such as, force fields, gravity, and
collision forces to create life-like scenes.

Figure 2. Cloth Simulation Structure - The concept in
this practical can also be applied to an interconnected system
of particles to representing cloths.

3. How to Organize the Network (Jello
Shape)

Example: Jello Cube To understand how to configure your
spring-damper system - consider a simple example, i.e., a
‘jello cube’ system. The particle constraints (i.e., springs) for
the ‘jello cube’ need to be connected is a specific topology to
create a stable network which we discuss in this section. Note,
the initial ‘jello cube’ will have the following properties:
• ‘Jello cube’ is a 8x8x8 mass point network
• 512 discrete points
• Connect the point-masses with springs (i.e., a clever and

coordinated topology)

Figure 3. Jello Network - Connecting the jello particles
together.

Structural, Shear and Bend Springs For the ‘jello cube’
to remain stable and in shape (i.e., return to a cube like pose) -
you need to incorporate spring types:
• Structural
• Shear
• Bend

Structural Springs Connect every point-mass node to its
‘six’ direct neighbours. For example, node (i,j,k) connected to:
(i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1). For
the surface nodes some of these neighbors might not exist.
Structural springs establish the basic structure of the ‘jello
cube’.

Shear Springs Shear springs disallow excessive shearing
and prevent the cube from distorting. Every node (i,j,k) con-
nected to its diagonal neighbors as shown in Figure 6.

www.xbdev.net/physics

Workshop Series: Jello Shape Simulation — 3/5

Figure 4. Spring Structures - Element interconnected
structure configurations.

Figure 5. Structural Springs for the ‘jello cube’ - Only
the springs connecting two surface vertices are shown in the
rendering.

Bend Springs Bend springs prevent the cube from folding
over. Every node connected to its second neighbor in every
direction (6 connections per node, unless surface node) as
shown in Figure 7.

Collision detection The movement of the ‘jello cube’ is
limited - for example, colliding with the terrain (i.e., a plane
for the ground and walls). For example, confining the ‘jello
cube’ to a bounding box - the collision detection implemented
would check all the vertices to see if they are inside or out-
side the box. For a plane, we recall the plane equation (i.e.,
P(x,y,z) =~n •~b = 0), with all points being initially on the
same side of the plane. When P(x,y,z)> 0 on one side of the
plane and P(x,y,z)< 0 on the other. Check all the vertices for
this condition.

Collision Response When collisions happen we must per-
form some action to prevent the object penetrating even deeper.
The ‘jello cube’ should bounce away from the colliding object.
Some energy is usually lost during the collision. While there
are several ways of handling collision response, we use the
penalty-based method. For the penalty-based method, when a
collision happens, we put an artificial collision spring at the

Figure 6. Shear Springs - You should be able to make out
the eight point-mass elements and the interconnected circuit
for the 3D cube. (Structural springs are black and shear
springs are in red).

Figure 7. Bend Springs - Where the black lines represent
structural springs and yellow lines bend springs (shown for a
single node only).

point of contact, which pushes the object backwards and away
from the colliding object. Collision springs have elasticity
and damping just like ordinary springs.

Integration Network of point-mass springs using the pop-
ular Hooke’s law with damping. Through Newton’s 2nd law
we are able to calculate the acceleration of every point-mass
at any given time (i.e., ~F = m~a). We know the mass and ac-
celeration of the system of particles and the ‘integration’ step
is used to compute the ‘actual motion’.

d~x
dt

=~v

d2~x
dt2 =

d~x
dt

=
1
m
(~FHooke +~Fdamping +~Fexternal)

(5)

where x is the point-mass position, v is the point-mass velocity,
and ~F is the applied force. Equation 5 describe the movement
of a single point-mass. With ~Fhook representing sum of all

www.xbdev.net/physics

Workshop Series: Jello Shape Simulation — 4/5

Hooke forces on a point-mass and ~Fdamping is the sum of all
damping forces on a point-mass. When we put these equations
together for all the mass points, we obtain a system of ordinary
differential equations (ODEs). In general, impossible to solve
analytically and must solve numerically. Methods to solve
such systems numerically are called integrators. The most
widely used integrators are: Euler, Runge-Kutta 2nd order
(aka the midpoint method) and Runge-Kutta 4th order (RK4).

4. Engineering Design Tips

• Numerical stability issues
For large time-steps the system will ‘explode’ (e.g.,

t = 0.001 is a good starting choice for the practical)
Euler is much more unstable compared to RK2 or

RK4, but requires smaller time-steps while being simpler
and faster

Euler is rarely used in practice (i.e., typically RK4)
Smaller time-steps means more stability and accu-

racy (but also means more computation)
• The time-step should be inversely proportional to the

square root of the elasticity k [Courant condition]
• Computational cost (i.e., trade-off: accuracy vs computation-

time)
• Be aware of floating point and double precision calcula-

tion errors
• Choosing the right elasticity and damping parameters is

an art (i.e., trial and error). Initially, set the ordinary and
collision parameters the same to create a stable simula-
tion

5. Summary

This practical introduced the fundamental Newtonian mechan-
ics of a spring-damper network for constructing soft body
structures. The soft body structures (i.e., a ‘jello shape’) was
implemented using distance constraints through a penalty-
based spring-damper topology. We resolve the multiple forces
affecting an interconnected set of point-mass particles and
discussed the mathematical relationship between force and
acceleration. In the next practical, we will discuss how to im-
plement a modified particle constraint system using a position-
based integrator for an aesthetically pleasing and robust sim-
ulation result. Your practical work should be structured in a
efficient, well commented format, such that the physics sim-
ulation is separate from the renderer update, and the physics
implementation which you develop can easily expanded and
interfaced with your other projects (i.e., modular component
programming).

6. Exercises
This practical only gives a brief introduction to mass-spring
systems. As an exercise for the student to help enhance their
understanding:

Intermediate
• Implement a scene where your ‘jello shape’ interacts

with the environment (e.g., colliding with spheres and
bouncing around)

• Implement your ‘jello shape’ so the spring-damper con-
strain colours are drawn based on the penalty force (e.g.,
gradient blue to red with blue for no forces and red for
maximum force)

• Implement your ‘jello shape’ with different spring-damper
constraints for regions of the shape (i.e., all the spring-
damper coefficients aren’t all the same)

• Implement your ‘jello shape’ so the spring-damper coef-
ficients change over time (e.g., gradually reduce to cause
a melting effect)

• Explore and engineer speed-up techniques by utilizing
the power of the GPU with CUDA or OpenCL

Advanced
• Implement a variety of different and unique ‘jello shape’

- e.g., loading surface meshes from external files to create
jello shapes for rabbits and tea-pots

• Implement multiple interacting ‘jello’ shapes in a scene

Acknowledgements

We would like to thank all the students for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this practical more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the practical clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with physics-based animation effects. So if you can
provide any advice, tips, or hints during from your own ex-
ploration of simulation development, that you think would
be indispensable for a student’s learning and understanding,
please don’t hesitate to contact us so that we can make amend-
ments and incorporate them into future practicals.

Recommended Reading

Physics for Game Developers, David M Bourg, Publisher:
O’Reilly Media, ISBN: 978-1449392512

Physics-based Animation, Kenny Erleben, Jon Sporring ,
Knud Henriksen, Publisher: Charles River Media, ISBN: 978-
1584503804

Computer Animation: Algorithms & Techniques, Rick Parent,
Publisher: Morgan Kaufmann, ISBN: 978-0124158429

www.xbdev.net/physics

Workshop Series: Jello Shape Simulation — 5/5

Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204

Kinematics and Dynamics Paperback. Kenwright. ISBN: 978-
1539595496

Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104

Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165

Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398

Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971

Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

www.xbdev.net/physics

	Introduction
	Overview
	Mass-Spring System
	How to Organize the Network (Jello Shape)
	Engineering Design Tips
	Summary
	Exercises
	Acknowledgements

