
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

WEBXR API

IN 20 MINUTES

(Coffee Break Series)

Kenwright

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

iii

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Copyright © 2021 Kenwright
All rights reserved.

No part of this book may be used or reproduced in any manner
whatsoever without written permission of the author except in
the case of brief quotations embodied in critical articles and
reviews.

BOOK TITLE:
WebXR API in 20 Minutes
ISBN-13: 979-8533764735

The author accepts no responsibility for the accuracy, com-
pleteness or quality of the information provided, nor for ensur-
ing that it is up to date. Liability claims against the author
relating to material or non-material damages arising from the
information provided being used or not being used or from the
use of inaccurate and incomplete information are excluded if
there was no intentional or gross negligence on the part of the
author. The author expressly retains the right to change, add
to or delete parts of the book or the whole book without prior
notice or to withdraw the information temporarily or perma-
nently.

Revision: 01072021
Author: Kenwright

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1 Introduction 3

2 Getting Started 17

3 Rendering with WebXR 45

4 Augmented Reality (AR) 71

5 Virtual Reality (VR) 81

6 Immersive Sound 97

7 Engines and Libraries 103

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Contents

1 Introduction 3

1.1 About this Book? .3

1.1.1 What this book is Not!3

1.2 What you’ll learn .5

1.3 What is XR? .5

1.4 What is WebXR? .8

1.5 Why should you learn WebXR?8

1.6 What can you use WebXR for?9

1.7 Why did WebVR die/not succeed?11

1.8 What are the Prerequisites?11

1.9 Which devices support WebXR?12

1.10 How does WebXR work?12

1.11 Structure of this Book13

1.12 Summary .14

2 Getting Started 17

2.1 Introduction .17

2.2 Setting up WebXR .18

2.3 Tools .20

2.3.1 A Code-Editor20

2.4 Skeleton Test Web-Page21

2.5 Running your WebXR Programs22

2.5.1 Python HTTP server module23

2.5.2 CodeSandBox - Online Server23

2.5.3 Only HTTPS (Secure origin required)23

2.6 Can you play with WebXR? (WebXR Supported?) . . .24

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

viii CONTENTS

2.6.1 ‘isSessionSupported’ is not a function28

2.7 You don’t have a VR/AR device (‘inline’)?28

2.7.1 Security and Hardware enumeration30

2.8 Graphical Output .30

2.8.1 Setting up the CANVAS renderer32

2.9 Input Tracking .33

2.10 Update Loop .34

2.11 User Input .36

2.11.1 Input Types37

2.11.2 Input Events38

2.11.3 VR vs AR Input38

2.12 End Presentation .40

2.13 Summary (Putting it all together)40

2.14 What to do next? .43

3 Rendering with WebXR 45

3.1 Introduction .45

3.2 What is WebGL? .46

3.2.1 Vertex .48

3.2.2 Pixel (Fragment)48

3.3 Rendering a Triangle in WebGL48

3.3.1 Simple Vertex and Pixel Shader49

3.4 WebGL inside WebXR53

3.5 Spatial Transformations56

3.5.1 No Transformation (Identity)58

3.5.2 Translation .59

3.5.3 Scaling .59

3.5.4 Rotation .60

3.5.5 Implementation and Managing Transforms . . .61

3.6 Camera Transforms63

3.6.1 Orthographic Projection64

3.6.2 Perspective Projection64

3.6.3 Implementing Camera65

3.7 Shaders Cont. .66

3.8 What to do next? .70

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CONTENTS ix

4 Augmented Reality (AR) 71

4.1 Introduction .71

4.2 What are the benefits of AR?72

4.3 A closer look at AR development72

4.4 Building your WebXR augmented reality applications . .73

4.5 Augmenting Your World75

4.6 Marker aligned with the floor (detected surface)79

4.7 What to do next? .80

5 Virtual Reality (VR) 81

5.1 Introduction .81

5.2 Viewer Perspective (e.g., Headset)86

5.3 Poses (Reference Spaces)87

5.4 Rendering .89

5.5 Moving/Locomotion92

5.6 Grabbing .93

5.7 What to do next? .95

6 Immersive Sound 97

6.1 Introduction .97

6.2 How to Add Sound to the Web Browser?98

6.3 Trigger Sounds .98

6.4 Background Music .99

6.5 3D Sounds .99

6.6 Audio and WebXR .101

6.7 What to do next? .102

7 Engines and Libraries 103

7.1 Games, Engines and Libraries103

7.2 What to do next? .104

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CONTENTS 1

Preface

WebXR seamlessly combines XR technologies (VR, AR and
MR) with the flexibility and accessibility of your browser to
help you easily and quickly develop versatile and creative XR
solutions. In this book, you’ll learn definitions, terminologies
and implementation details. You’ll combine basic concepts with
uncomplicated working examples to help you see how WebXR
works. As a strong understanding of the underlying principles
is important if you’re to leverage the full potential of WebXR.
The purpose of this text is to introduce you to WebXR from
the ground-up (get you started). As you’ll discover, WebXR is
a powerful interface that pulls together all the elements from
extensible technologies (like VR, AR and MR). WebXR’s ver-
satility and improvisation will allow you to rapidly and freely
develop expressive prototypes (by seamlessly connecting hard-
ware and software). While WebXR offers unprecedented means
to immerse and interact your audiences, it also enables you to
balance and manage the ever-changing and diverse XR land-
scape (as XR standards evolve). These benefits are partly due
the fact that WebXR utilizes the power and control of your
browser. As WebXR is a fusion of Javascript, WebGL and
other libraries which allow you to connect movement and visu-
als in unique ways (interpret expressive emotions or tell stories
through action and movement). WebXR will let you nurture
your creativity and encourage you to explore designs that work
in novel and interesting ways. Once you’ve mastered the basics
of WebXR, you’ll have opportunities to experiment with new
interactive interfaces for your applications, instead of following
traditional designs which may not fit the style or approach of
your system. Another characteristic of WebXR is the deliber-
ate use of Javascript (which is simple, lightweight and flexible).
This lets you easily write and test prototype quickly, such as
tweaking and experimenting with ideas that ‘work’ by embrac-
ing your user in a truly immersive/fun situations. Overall, We-
bXR will allow you to support specialist hardware effortlessly
(let your browser manage compatibility issues), while helping
you develop applications that possess coordinated, powerful vi-
sual and emotional experiences.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1. Introduction

1.1 About this Book?

This short book provides a fast-paced introduction to WebXR
that will take you on a spine-tingling adventure into the amaz-
ing world of immersive virtual, augmented and mixed reality
development using your web browser. While this text covers
a large amount of information, the light and compelling ap-
proach combined with diagrams, simplified code listings and
relaxed style will help to keep you engaged and stimulated as
you learn the topic.

1.1.1 What this book is Not!

• Not about teaching you an Engine or any of the pre-
developed wrapper libraries for WebXR

• Not about hiding away underlying implementation details

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

4 Chapter 1. Introduction

Figure 1.1: Extended Reality (XR) - The ’X’ in XR is a
variable that stands for any letter. Virtual Reality (VR) en-
compasses all immersive experiences.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.2 What you’ll learn 5

• Not about writing a complete fully featured game/interactive
application

Instead this book focuses on:

• Learning and using the WebXR API directly
• Ground-up approach using minimum working examples
• Practical book that uses a hands-on approach (writing code

to test and see what’s happening and to understand why)
• Springboard for beginners to help you ‘get started’ with We-

bXR development (nuts & bolts)

1.2 What you’ll learn

3 Discover the fundamentals of WebXR, the API, hardware
and history, different applications, and the design challenges
of the medium

3 Learn the basics of 3D graphics, how you create objects and
how to lay them out to create an environment

3 Explore how you interact with a XR devices, including the
concepts and technologies of XR interaction

3 Utilise the skills you have learnt to create your own XR so-
lutions

1.3 What is XR?

In a nutshell, Extended Reality (XR) refers to all real-and-
virtual environments generated by computer graphics and wear-
ables. The ‘X’ in XR is simply a variable that can stand for
any letter (not limited to just VR, AR or MR - XR > VR,
AR and MR). XR is the umbrella category that covers all the
various forms of computer-altered reality, including (but not
limited to): Augmented Reality (AR), Mixed Reality (MR),
and Virtual Reality (VR). Since AR, VR and MR are heavily
dependant on spatial computing, the concepts you learning in

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

6 Chapter 1. Introduction

Figure 1.2: WebXR - Everything and everyone is moving on-
line! Through WebXR, extended reality is more accessible than
ever, welcoming in a new immersive frontier of storytelling,
data visualization, social sharing, and so much more.

one subset undoubtedly transfers to the others.

XR is more than Headsets and Mobile Phones As you
might be wondering, is there really a need to unify VR, AR and
MR under a single domain? However, you have to remember,
XR is designed to go beyond current technologies - to embrace
future ‘extended reality’ system, such as, brain-computer in-
terfaces, (BCI), digital contact lenses and holograms. As these
technologies evolve and become accessible, they will work to-
gether synergistically to create incredible experiences. The We-
bXR library is a forward thinking API, which is designed sup-
port and allow these new technologies to be integrated in over
time through future updates.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.3 What is XR? 7

Figure 1.3: Future XR Interfaces - XR is not limited to
headsets and mobile phones, as time goes by you will be sure
to see research prototypes, such as, holograms, brain-interfaces
and contact-lens systems make their way into the mainstream.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

8 Chapter 1. Introduction

Give It Some Thought
XR brings together VR, AR, and MR under one API (over-
lapping). You should consider rational behind this, for ex-
ample, the graphical interface, since it’s not feasible to con-
sider displays separately in the same way it’s not possible
to separate optics. (Not to mention the topic of persistence
which is also common and very important).

1.4 What is WebXR?

WebXR encapsulates and brings together all of the ‘extended’
realities (i.e., virtual, augmented and mixed reality) under one
API. Previously, there was separate APIs for the different tech-
nologies (WebAR and WebVR). While WebXR provides a sin-
gle set of APIs, that is integrated and built into the latest
web-based technologies. Allowing you to develop and publish
immersive experience through your web-browser.

While there may be many options for graphical display tech-
nologies – including libraries like WebGL, CSS, Canvas, SVG
and plug-in based choices (Silverlight) - you may be asking
yourself how WebXR fits in and whether or not you should
learn it. So let’s take a quick look at why you should.

1.5 Why should you learn WebXR?

Easy to get started with WebXR, and it lets you create im-
mersive interactive solutions without using plug-ins. It works
with most web-based platform that support the latest W3C
standards, and it’s so popular right now that you don’t have
to look far at all to find some awesome examples. Range from
realistic 3D virtual worlds to augmented maps. WebXR is pop-
ping up all over the place. Currently, you’ll be glad to hear,
WebXR is supported by most major browsers including Inter-

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.6 What can you use WebXR for? 9

net Explorer, and it even works on the vast majority of mobile
platforms including iOS.

Figure 1.4: Browsers - Nearly all major web-browsers are al-
ready on-board and currently support WebXR. W3C providing
an open source set of standards and regulations to ensure con-
sistency across systems/software.

• Frictionless access
• W3C standards
• Widely supported
• Works everywhere
• Easy to use/learn

1.6 What can you use WebXR for?

Here are some instances when you should use WebXR:

• Data visualization: Some types of data are more useful
when viewed in an immersive space, this includes things like
medical MRI scans or engineering survey data

• Games: This is probably the most obvious. It should also
be noted that games development framework (e.g., Three.js)
offers libraries that support WebXR

• Interactive page components: This allows users to ex-
plore your product from every angle

WebXR can also offer an interesting challenge to any developer,
and it gives you that extra satisfaction of having something
immersive and visually attractive to demonstrate (employers or

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

10 Chapter 1. Introduction

Figure 1.5: Extended Reality (XR) Spectrum - Diverse
range of applications all under XR. As XR will offer new re-
alities and play a greater role in our lives. XR industry will
become increasingly important. Through technologies and li-
braries, such as WebXR, immersive applications will become
more accessable and be integrated more into our world.

your friends will probably be more impressed by an immersive
demo than some standard visual output).

Other areas and applications include:

• 360 photo/video tours
• Web shops
• Art/music
• IoT (Internet of Things)
• Games
• Education

Figure 1.6: RIP WebVR - WebVR is dead, long live WebXR.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.7 Why did WebVR die/not succeed? 11

1.7 Why did WebVR die/not suc-
ceed?

WebVR is now discontinued. The reason the WebVR API was
abandoned, was that it was superseded by a more power-
ful API that is capable of representing virtual reality and aug-
mented reality devices simultaneously. This more powerful API
(as you might have guessed) is WebXR. Also WebVR was de-
signed to support ‘only’ VR headsets, while neglecting another
important immersive technologies behind. Instead of having a
WebVR, WebAR, WebMR, Web(?)R, it was decided to create
a unified extensible reality API for current and future tech-
nologies. As there is nothing stopping the various approaches
mixing realities to create novel hybrids/solutions. (not to men-
tion, the graphical concepts and algorithms have similarities for
the different realities - makes sense to keep them together).

1.8 What are the Prerequisites?

While the WebXR API is straightforward in itself, to under-
stand and implement XR solutions, you need some basic knowl-
edge of Javascript and Computer Graphics (e.g., WebGL). For
this short text, you’ll benefit more if you have some previous
knowledge of the following:

• Programming concepts (e.g., conditional logic, function, al-
gorithms)

• Javascript
• HTML/CSS (basics to setup the browser window)
• Graphical principles (e.g., lighting, transforms and vectors)
• WebGL (web-based API used to generate/output graphical

content to screen canvas)

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

12 Chapter 1. Introduction

Figure 1.7: Prerequisites - To take advantage of WebXR you
should be familiar with a number of concepts, such as program-
ming and graphics.

1.9 Which devices support WebXR?

The research/public and industry sectors were quick to adopt
and take on board the WebXR API - and it’s widely supported.
For examples, some of the supported devices include (but not
limited to):

• ARCore-compatible devices
• Google Daydream
• HTC Vive
• Magic Leap One
• Microsoft Hololens
• Oculus Rift
• Samsung Gear VR
• Windows Mixed Reality headsets
• ...

1.10 How does WebXR work?

In the fewest possible words, WebXR performs the following
tasks: (1) Detect if XR capabilities are available. (2) Query the
XR device capabilities. (3) Poll the XR device and associated
input device state. (4) Displays imagery on the XR device at
the appropriate frame rate. Simple?

Since, WebXR is an open standard, all industries can (and

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.11 Structure of this Book 13

Figure 1.8: WebXR, WebGL and the Browser - WebXR
uses the browser languages and the WebGL standard to manage
the XR input/output.

hopefully will) support WebXR. You have to remember, We-
bXR is more than just another library! It’s the unification of
standards that complements existing web-based tools (WebGL,
WebAudio, ...). You can expect WebXR to go from strength
to strength as the XR sector continues to grow and develop.

1.11 Structure of this Book

The book follows the given structure:

• The first chapter starts by explaining the fundamentals
around WebXR (the whats and whys behind the WebXR
API).

• This is followed by an introduction to the API using a bottom
up minimum working example, which essentially gets you up
and running with WebXR (i.e., initializing a running WebXR
demo that doesn’t do much but helps you see how all the
pieces work).

• You’re then introduced to WebGL (since WebXR uses We-
bGL for rendering).

• Then you’re given two examples that focus on AR and VR
specifically.

• Sound is discussed and explained (i.e., how to integrate basic
sounds into your WebXR solution), since a this is often an
overlooked component but an important one for immersive

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

14 Chapter 1. Introduction

experiences.
• Finally, a summary of future work and projects to take your

mastery of the subject further, such as, working with external
libraries and engines.

1.12 Summary

XR technologies are not going to go away. They’re not a passing
phase! You should embracing XR technologies, which can make
your life easier and offer solutions to possibilities that were
previously impossible or infeasible.

To summarize:

• WebXR is a JavaScript API that enables applications to in-
teract with extended reality devices, such as the HTC Vive,
Oculus Rift, Google Cardboard or Open Source Virtual Re-
ality in a web browser

• Extended Reality (XR) refers to all real-and-virtual envi-
ronments generated by computer technologies and wearables.
The ‘X’ in XR is a variable that can stand for any letter
3 Virtual Reality (VR) encompasses all immersive expe-

riences. These could be created using purely real-world
content (360 Video), purely synthetic content (Computer
Generated) or a hybrid of both

3 Augmented Reality (AR) is an overlay of computer
generated content on the real world that can superficially
interact with the environment in real-time. With AR,
there is no occlusion between CG content and the real-
world

3 Mixed Reality (MR) is an overlay of synthetic content
that is anchored to and interacts with objects in the real
world—in real time. Mixed Reality experiences exhibit oc-
clusion, in that the computer-generated objects are visibly
obscured by objects in the physical environment

Note: WebXR is ‘new’, and based on the latest exploration of virtual

and augmented realities; that taps the power of the web along with the

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.12 Summary 15

unification of these realities, under one philosophical umbrella, making

it easier to create immersive 3D art, interactive environments, VR tools

and more. Once you get started with WebXR, you’ll see it’s an invaluable

resource.

Creating mouth watering immersive experience is now more
possible than ever before. The WebXR API enables you to
run your XR applications in your browser, while supporting
a broad set of devices and experiences. WebXR opens the
door to combining different web-based technologies, like speech
recognition or geolocation, not to mention, a plethora of de-
vices that can be connected and accessed simultaneously. This
can range from user/room tracking devices like the Microsoft
Kinect to Cardboard-based solutions - or even control other de-
vices around the house/office from within your virtual world.
The strength of the web and these online technologies lies in its
ability to connect. These connections will allow you to enrich
your experiences to be more social, shareable, frictionless, open
and interactive.

Just remember, the success and reach of your application is
dependent on how it adapts to different ways it’s experienced.
If you limit your application to a specific device, you’ll restrict
your reach. You may well be tailoring your application to a
specific piece of hardware, but you must be aware of the conse-
quences. The trick to a successful solution with a large reach is
down to the design. To be flexible in your options, to avoid leav-
ing users behind (for example, if a user doesn’t have a headset,
they can still see/view the experience through their monitor).
As you’ll see, WebXR lets you poll for available functionality
and adapt your experience to the users facilities (e.g., headset,
desktop or mobile device). For a mobile devices the orientation
sensors may help to visualize information accordingly, while a
desktop solution would allow the mouse and keyboard to navi-
gate and visualize the same information.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2. Getting Started

2.1 Introduction

As a web-interface, the WebXR API makes full use of the fea-
tures built into many, if not all, contemporary web-browsers.
You’ll access these features through the dominant scripting lan-
guage of the web: ‘JavaScript’. The WebXR API extends the
existing WebGL graphics library to allow developers to merge
the writing of applications in both JavaScript and GLSL. The
WebGL graphics library is a powerful API that is supported
by OpenGL ES. Remember, WebXR API is more than just an
interface between you and your XR applications, it provides
a bridge between WebGL and the drivers for GPUs built into
computers and mobile devices alike. The WebXR API is also a
conduit for client-server communication which can be processed
by hundreds or even thousands of processes.

Despite the WebXR API’s breadth, reaching from software to
hardware, from peripheral controllers to GPUs, the tools you

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

18 Chapter 2. Getting Started

Figure 2.1: WebXR - Taking a look inside (how does WebXR
work).

need as developers of WebXR content are modest. A simple
code editor, like Microsoft’s Visual Studio Code (or any text
editor), will provide you with all the functionality you need to
write HTML, CSS, JavaScript and GLSL in a document. You
then host these documents locally or online to run your appli-
cations through a web-browser. You can also take advantage
of the built-in debugging tools and resources of the browser
itself (e.g., most browsers provide debug information, perfor-
mance details and log outputs for any issues/errors while your
program runs).

2.2 Setting up WebXR

Writing a minimum working WebXR program - is nothing spe-
cial, but you must remember to initializing and call the WebXR
API functions in the correct order. Also since most of the func-
tions are non-blocking (asynchronous), you have to be sure each
stage has finished before progressing.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.2 Setting up WebXR 19

Figure 2.2: Text Editor - Writing WebXR programs can’t
be any easier - all you need is a basic text editor and a web-
browser! (one example is Notepad++ (https://notepad-plus-
plus.org/downloads/), it’s free, fast, open source and has tons
of features - including syntax highlighting).

In the following sections, you’ll perform the following checks:

1. Check that WebXR API is available on your browser
2. Check what options are supported by the API
3. Check for any devices
4. Enter immersive experience

While the source files are text based, which means you can
write them using any .txt editor (e.g., notepad++), to run
the WebXR samples you need to have a web-server running
(either a local test server or an online solution). You can’t
just run the examples as local file in your web-browser (i.e.,
file:///C:/test.html).

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

20 Chapter 2. Getting Started

Figure 2.3: WebXR Support - Steps to follow when checking
if WebXR is support and what to do.

2.3 Tools

The tools described in the following sections should be easy to
access and provide an uncomplicated set of tools to help you
get started developing WebXR content. However, feel free to
use any tools/applications that you’re more comfortable with.
Most of the suggested tools are free/open-source, and have been
vetted by reputable parties. But remember, with any bleed-
ing edge technologies, like WebXR, always refer to the most
recent, published documentation for up-to date compatibility
and requirements (just in case anything changes or certain tool-
s/packages are required).

2.3.1 A Code-Editor

Akin to a text-editor, a code-editor allows you to type the syn-
tax of a program into a document. Features built into a code-

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.4 Skeleton Test Web-Page 21

editor create an environment convenient for writing, deploying,
testing, and correcting code (e.g., automatic indentation, word
highlighting or predictive suggestions). One such example, the
Notapad++ editor, is free, cross-platform, popular and power-
ful. You can use it to write the HTML, JavaScript and CSS -
which you need to create your XR applications for the web.

2.4 Skeleton Test Web-Page

To begin creating a web-page featuring WebXR, you must first
be able to run HTML web-pages through a web-server. First,
create a new text file with the ‘.html’ extension and save it as
‘index.html’. In the body of the document, type the simple
code listing below. Nothing complex, it’s just your minimal
working HTML template for a web-page.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,

↪→ initial-scale=1.0">
<title>WebXR</title>
</head>
<body>
<script type="text/javascript">
alert('hello');

</script>
</body>
</html>

The script tags in an HTML document inform the browser’s
layout engine of the structure of your page. The visual content
rendered to the screen occurs between the < body > element
tags of the HTML document. You want to launch your new
web-page in your web browser through your web-server. For
example, if you’re running a ‘localhost’ on port 8000, you’d
navigate to the address in your browser, that is, ‘localhost:8000’
- which will open the web-page on your screen.

The < script > tag with a type attribute set to “text/-
javascript” notifies the browser that what lies between these
tags is distinct from HTML. In this case, you’ve told the

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

22 Chapter 2. Getting Started

WebXR Emulator
(Access to XR Devices)
If you don’t have access to an XR device, then not to worry!
There is the WebXR emulator. So you can still test your
code and applications without a physical XR device. The
WebXR emulator is a web-browser extension that enables
you to run and test XR content using a desktop browser
(without a physical XR device).
The WebXR emulator runs on the following browsers:
• Chrome

Google Chrome Web Store
• Firefox

https://addons.mozilla.org/en-
US/firefox/addon/webxr-api-emulator

However, while you can test out XR applications using the
emulator, it’s worth going the extra mile to try out your
applications on an physical XR device.

browser the text that will appear between the < script > tags
will be of the type “JavaScript”. For the simple example, it
triggers the “alert()” popup box to be shown and displays the
message ’hello’. This lets you check that your web-server is
running and you can run a simple web-page/script.

2.5 Running your WebXR Programs

To test and debug Web applications written in a code-editor,
developers require the creation of a local web-server (or
the use of an online server/editor). Mimicking the behav-
ior of a remote server that stores and delivers web-pages and
their resources to client browsers, a local web-server allows de-
velopers to launch and view web applications from their local
machines (so you don’t have to be connected to the internet to

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.5 Running your WebXR Programs 23

test and experiment). For example, to run and test the exam-
ples in this book, you’ll need to create a local server or upload
the samples to a server that support http.

A popular option to create a local web-server is with Python.
You require a Python installation on your machine before you
can run a local server to test your programs (very easy to setup
and get going).

2.5.1 Python HTTP server module

See https://docs.python.org/3/library/http.server.html.

2.5.2 CodeSandBox - Online Server

Another common resource for the creation, testing and devel-
opment of your project is an online tool called ‘CodeSandBox’.
It’s a popular resource and has many positive testimonials from
other developers who speak favourably of its flexibility and easy
of use.

See https://codesandbox.io/

These are just a couple of examples, and there are lots of ways
to create and manage online resources. Please use whatever
solution you prefer.

2.5.3 Only HTTPS (Secure origin required)

The WebXR API is considered a “powerful feature” and thus
only available on secure origins (i.e., URLs using HTTPS).
However, I’m sure you’ll be happy to learn, for development
purposes localhost counts as a secure origin, and other domains
can be temporarily treated as secure via browser-specific mech-
anisms (e.g., using Chrome/Chromium settings).

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

24 Chapter 2. Getting Started

2.6 Can you play with WebXR? (We-
bXR Supported?)

A few lines of code will let you check if your browser/device
supports WebXR!

if ("xr" in window.navigator) {
alert("WebXR can be used!");

} else {
alert("Darn! WebXR isn't available");

}

If you’re curious what’s inside the ‘window.navigate’ object,
you can use these few lines:

var aa = window.navigator;

var prop = "";

for(var key in aa){
prop = prop + '
';
prop = prop + key + ' -> [' + aa[key] + ']';

}

console.log(prop);

This will write out a lot of information, not all of it is im-
portant for WebXR, however, it shows you all of the things
that your browser support and if they’re active (e.g., such as
the geolocation, userAgent and so on). See an example output
below:

vendorSub -> []
productSub -> [20030107]
vendor -> [Google Inc.]
maxTouchPoints -> [0]
userActivation -> [[object UserActivation]]
doNotTrack -> [null]
geolocation -> [[object Geolocation]]
connection -> [[object NetworkInformation]]
plugins -> [[object PluginArray]]
mimeTypes -> [[object MimeTypeArray]]
webkitTemporaryStorage -> [[object DeprecatedStorageQuota]]
webkitPersistentStorage -> [[object DeprecatedStorageQuota]]
hardwareConcurrency -> [4]
cookieEnabled -> [true]
appCodeName -> [Mozilla]
appName -> [Netscape]

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.6 Can you play with WebXR? (WebXR Supported?) 25

appVersion -> [5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537
↪→ .36 (KHTML, like Gecko) Chrome/86.0.4240.183 Safari/537
↪→ .36]

platform -> [Win32]
product -> [Gecko]
userAgent -> [Mozilla/5.0 (Windows NT 10.0; Win64; x64)

↪→ AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86
↪→ .0.4240.183 Safari/537.36]

language -> [en-US]
languages -> [en-US,en]
onLine -> [true]
getBattery -> [function getBattery() { [native code] }]
getGamepads -> [function getGamepads() { [native code] }]
javaEnabled -> [function javaEnabled() { [native code] }]
sendBeacon -> [function sendBeacon() { [native code] }]
vibrate -> [function vibrate() { [native code] }]

Axr -> [[object XRSystem]]

mediaCapabilities -> [[object MediaCapabilities]]
permissions -> [[object Permissions]]
locks -> [[object LockManager]]
wakeLock -> [[object WakeLock]]
usb -> [[object USB]]
mediaSession -> [[object MediaSession]]
clipboard -> [[object Clipboard]]
credentials -> [[object CredentialsContainer]]
keyboard -> [[object Keyboard]]
mediaDevices -> [[object MediaDevices]]
storage -> [[object StorageManager]]
serviceWorker -> [[object ServiceWorkerContainer]]
deviceMemory -> [8]
presentation -> [[object Presentation]]
userAgentData -> [[object NavigatorUAData]]
bluetooth -> [[object Bluetooth]]
...

The important line you want to keep an eye out for is A :

xr -> [[object XRSystem]]

You can do the same as you did above, but this time, only
print out the properties for the xr object. Here is what the
code would look like:

var prop = "";
for(var key in window.navigator.xr){
prop = prop + '
';
prop = prop + key + ' -> [' + window.navigator.xr[key] + ']';

}
console.log(prop);

You should get an output in the browser console window that
looks something like the following:

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

26 Chapter 2. Getting Started

ondevicechange-> [null]
isSessionSupported-> [function isSessionSupported() { [native

↪→ code] }]
requestSession-> [function requestSession() { [native code] }]
supportsSession-> [function supportsSession() { [native code] }]
addEventListener-> [function addEventListener() { [native code]

↪→ }]
dispatchEvent-> [function dispatchEvent() { [native code] }]
removeEventListener-> [function removeEventListener() { [native

↪→ code] }]

This is a good way of exploring your system and learning what’s
available. If you notice the output listed for your xr object,
there are only seven key function properties. You’ll go through
what each of these lines means next. However, you should not
forget, for additional details/information you can also refer to
the online WebXR documentation (which is important as new
updates/versions are developed).

Looking at the output for the xr object properties. The first
line, you’ll notice is ‘null’, which is an event callback to let you
know if the device has changed. Obviously, you’ve not setup
anything yet, so it’s null.

The next important line you’ll notice is ‘isSessionSupported’.
This is where it gets interesting.

If you call the ‘isSessionSupported’ method, you’ll get a promise
object returned:

let bb = navigator.xr.isSessionSupported();
console.log(bb);

>>[object Promise]

You access the result of a promise by using the ‘.then’ method
(or using ‘await’ in an async function). Your ‘.then’ callback
is then called when/if the result is made available, which will
happen after you call has been resolved, or if the promise was
already resolved prior to when it was called (quick/instant re-
ply).

However, by default it will return an empty object. This is
because the method takes arguments. The arguments specify
which device you want to check are supported.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.6 Can you play with WebXR? (WebXR Supported?) 27

await vs .then()
(Performance)
await is just an internal version of .then() (doing basically
the same thing). The reason to choose one over the other
doesn’t really have to do with performance, but has to do
with desired coding style or coding convenience. Certainly,
the interpreter has a few more opportunities to optimize
things internally with await, but its unlikely that should
be how you decide which to use. If all else was equal, You
would choose await (if you don’t mind waiting). ‘Await’ was
used for some of the examples, to make the code simpler
to read/write and understand (step-by-step sequential).

Used properly, await can often save you a bunch of lines of
code making your code simpler to read, test and maintain.
That’s why it was invented.

There’s no meaningful difference between the two versions
of your code. Both achieve the same result when the axios
call is successful or has an error.

Where await could make more of a convenience difference
is if you had multiple successive asynchronous calls that
needed to be serialized. Then, rather than bracketing them
each inside a .then() handler to chain them properly, you
could just use await and have simpler looking code.

A common mistake with both await and .then() is to forget
proper error handling. If your error handling desire in this
function is to just return the rejected promise, then both of
your versions do that identically. Then again, if you have
multiple ‘async’ calls in a row and you want to do anything
more complex than just returning the first rejection, then
the error handling techniques for await and .then()/.catch()

↪→ are quite different and which seems simpler will depend
upon the situation.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

28 Chapter 2. Getting Started

The different argument values are:

enum XRSessionMode {
"inline",
"immersive-vr",
"immersive-ar"

};

2.6.1 ‘isSessionSupported’ is not a function

navigator.xr.isSessionSupported('immersive-vr').then(function
↪→ (supported) {

console.log(supported);

});

/*
or with 'await'
let supported = await navigator.xr.isSessionSupported('

↪→ immersive-vr');
console.log(supported);

*/

2.7 You don’t have a VR/AR device
(‘inline’)?

For testing on a desktop, you can use the “inline” webxr ses-
sion. So even if you haven’t actually got a physical device at
least you can test out the WebXR API.

navigator.xr.isSessionSupported('inline').then(function (
↪→ supported) {

console.log('inline supported:', supported);

});

WebXR applications begin presenting XR content by call-
ing navigator.xr.requestSession() with the XRSessionMode (e.g.,
“immersive-vr”). This returns a promise that resolves to an
XRSession, which the developer keeps a reference to. This ob-
ject is what almost all further interaction is done with

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.7 You don’t have a VR/AR device (‘inline’)? 29

Notes
(Immersive vs Inline)
3 immersive-ar - The session’s output will be given ex-

clusive access to the immersive device, but the rendered
content will be blended with the real-world environ-
ment. The session’s ‘environmentBlendMode’ indicates
the method to be used to blend the content together.

3 immersive-vr Indicates that the rendered session will
be displayed using an immersive XR device in VR mode;
it is not intended to be overlaid or integrated into the sur-
rounding environment. The ‘environmentBlendMode’ is
expected to be opaque if possible, but might be additive
if the hardware requires it.

3 inline The output is presented ‘inline’ within the con-
text of an element in a standard HTML document, rather
than occupying the full visual space. Inline sessions can
be presented in either mono or stereo mode, and may or
may not have viewer tracking available. Inline sessions
don’t require special hardware and should be avail-
able on any user agent offering WebXR API support.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

30 Chapter 2. Getting Started

for the remainder of the VR content presentation. So
if you don’t have a valid ‘XRSession’ you can’t go any further!

You should have something like this:

sessionType = "immersive-vr";
if (!navigator.xr) {
alert("no WebXR supported!");

}

navigator.xr.isSessionSupported("immersive-vr")
.then((supported) => {
// if you don't have a vr device connected fallback to '

↪→ inline'
// think of those poor people who want to try your demo but
// can't because they don't have a device yet!

if(!supported)
{

alert("falling back to 'inline' mode");
sessionType = "inline";

}
});

2.7.1 Security and Hardware enumeration

In WebXR, a list of connected hardware cannot be retrieved
to avoid fingerprinting. Instead a single active “XR device” is
implicitly picked by the user agent and all operations are per-
formed against it. (System support for multiple XR devices at
once is almost unheard of at the moment, so this isn’t problem-
atic for most any real world scenario). Changes to the available
XR hardware are indicated by the ‘devicechange’ event of the
navigator.xr object.

2.8 Graphical Output

This is were you bring together the WebXR device with the
visual technology (i.e., the XR screen output). You configure
and do this through ‘Canvas’.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.8 Graphical Output 31

Figure 2.4: Initialization - Steps from checking for a sup-
ported session through to the render/update loop.

Figure 2.5: Graphics - WebXR presents graphics through We-
bGL and Canvas.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

32 Chapter 2. Getting Started

Just to note, the HTML Canvas API is used to draw graphics, on-the-fly

(real-time). The Canvas API provides a means for drawing graphics via

JavaScript and the HTML elements. Among other things, it can be used

for animation, game graphics, data visualization, photo manipulation and

real-time video processing.

2.8.1 Setting up the CANVAS renderer

WebXR applications must first make the WebGL context com-
patible with the active XR device. This ensures that the
WebGL resources reside on the GPU that is optimal for VR
rendering (for example, the one that the headset is phys-
ically connected to on a multi-GPU desktop PC). This is
done by either setting the ‘xrCompatible’ key to true in the
WebGLContextCreationAttributes when creating the context or call-
ing gl.makeXRCompatible() on the context after it’s been created
(which may trigger a context loss).

Then you construct a new XRWebGLLayer , passing in both the
XRSession and an XR compatible WebGLRenderingContext. This
layer is then set as the source of the content the XR hard-
ware will display by passing it to xrSession.updateRenderState()

as the ‘baseLayer’ of the XRRenderStateInit dictionary. The can-
vas should not need to be resized for best results. As you can
see in the following listing example:

let glCanvas = document.createElement('canvas');
let gl = glCanvas.getContext('webgl', { xrCompatible: true });

// *** Important***
let xrSession = await navigator.xr.requestSession('inline');
let xrLayer = new XRWebGLLayer(xrSession, gl);
xrSession.updateRenderState({ baseLayer: xrLayer });

console.log('xrSession:', xrSession);
// Now presenting to the device.

You can look at the xrSession object information:

xrSession:
XRSession
domOverlayState: null
environmentBlendMode: "opaque"
inputSources: XRInputSourceArray {length: 0}

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.9 Input Tracking 33

interactionMode: "screen-space"
onend: null
oninputsourceschange: null
onselect: null
onselectend: null
onselectstart: null
onsqueeze: null
onsqueezeend: null
onsqueezestart: null
onvisibilitychange: null
renderState: XRRenderState {depthNear: 0.1, depthFar: 1000,

↪→ inlineVerticalFieldOfView: 1.5707963267948966,
↪→ baseLayer: null}

visibilityState: "hidden"
__proto__: XRSession

2.9 Input Tracking

WebXR also requires you to define the tracking environment
you want your input/movement information communicated in.
This is both to enable a wider range of hardware (like AR
devices) and to simplify the creation of floor-aligned content
by removing much of the matrix math.

The tracking space is specified by calling
xrSession.requestReferenceSpace() with the desired
XRReferenceSpaceType, which returns a promise that re-
solves to an XRReferenceSpace. You then supply this object
any time poses requested. A ‘local’ reference space closely
aligns with WebVR’s implicit tracking environment, while a
‘local-floor’ reference space aligns the virtual environment with
the floor of the user’s physical environment. A ‘bounded-floor’
reference space also aligns with the user’s physical floor, with
the addition of reporting boundsGeometry, which gives a flexible
and accurate full polygonal boundary.

xrReferenceSpace = await xrSession.requestReferenceSpace("local"
↪→);

If you want to use reference spaces other than ‘local’ during
an “immersive-vr” session you must also request consent to
use it at session creation time by passing the desired type to
either the requiredFeatures or optionalFeatures members of the

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

34 Chapter 2. Getting Started

XRSessionInit dictionary passed to navigator.xr.requestSession().
This will cause the user-agent to prompt you for your consent
to use the more detailed levels of tracking if necessary.

let xrSession = await navigator.xr.requestSession('immersive-vr'
↪→ , {

requiredFeatures: ["local-floor"]
});

let xrReferenceSpace = await xrSession.requestReferenceSpace("
↪→ local-floor");

2.10 Update Loop

In WebXR, an XRFrame is passed into the callback provided to
xrSession.requestAnimationFrame(). The user’s pose is queried
from the XRFrame by calling xrFrame.getViewerPose() with the
XRReferenceSpace the developer wants the pose reported in. The
XRViewerPose that’s returned contains an array of XRView, each
of which reports a projectionMatrix and a transform that indi-
cates the required position of the “camera” for that view. The
projectionMatrix is expected to be used as-is, but the trans-
form (which is an XRRigidTransform) providing a position vector
and orientation quaternion, as well as a matrix representation
of the same transform). The XRViewerPose also has a top-level
transform that gives the position and orientation for the VR
hardware. No velocity or acceleration is exposed by WebXR at
this time.

The WebXR application renders the scene N-times, once for
each XRView that’s reported by the XRViewerPose. The number of
views reported may change from frame to frame.

Content is rendered into the framebuffer of the XRWebGLLayer,
which is allocated by the user-agent to match the VR hard-
ware’s needs. (The default WebGL framebuffer is not used by
WebXR for “immersive-vr” sessions, and can be rendered into
for display on the page as usual during a VR presentation).
The viewport for each view is determined by passing the XRView

↪→ into xrWebGLLayer.getViewport(). The size of the XRWebGLLayer

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.10 Update Loop 35

↪→ framebuffer is determined by the VR hardware (and re-
ported on the layer as framebufferWidth and framebufferHeight

↪→) but can be scaled at layer creation time by setting the
framebufferScaleFactor in the XRWebGLLayerInit dictionary.

WebXR automatically presents the content of the
XRWebGLLayer’s framebuffer to the VR hardware when the
xrSession.requestAnimationFrame() callback returns.

See the following example listing:

function onXRFrame(t, frame) {
let session = frame.session;
// Queue a request for the next frame to keep the
// update loop going.
session.requestAnimationFrame(onXRFrame);

// Get the XRDevice pose relative to the Reference
// Space created earlier. The pose may not be
// available for a variety of reasons, so
// you'll exit the callback early if it comes back as null.
let pose = frame.getViewerPose(xrReferenceSpace);
if (!pose)
{
return;

}

// Ensure you're rendering to the layer's backbuffer.
let layer = session.renderState.baseLayer;
gl.bindFramebuffer(gl.FRAMEBUFFER, layer.framebuffer);

// Loop through each of the views reported by the viewer pose.
for (let view of pose.views)
{
// Set the viewport required by this view.
let viewport = layer.getViewport(view);
gl.viewport(viewport.x, viewport.y,

viewport.width, viewport.height);

// Render your scene using the view's
// matrices and the Canvas API

//
}

}

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

36 Chapter 2. Getting Started

2.11 User Input

WebXR applications take input from multiple sources through
xrSession.inputSources, which is an array of XRInputSource ob-
jects.

The XRInputSource contains a targetRaySpace (for point and
click tracking) and optional ‘gripSpace’ (for hand-held objects)
which can be passed to the xrFrame.getPose() method along with
the tracking space they should be reported relative to in order
to get the XRPose of the input source.

The XRInputSource also has a handedness attribute to indicate
which hand the input source is associated with, if known. For
button and axis state the XRInputSource has an optional gamepad
attribute, which is a Gamepad object (that notably lacks the non-
standard extensions that was used by the old WebVR API and
does not appear in the array returned by navigator.getGamepads()

).

The profiles attribute of the XRInputSource contains an array of
strings that indicate, with decreasing specificity, the type of
input device and can be used to load an appropriate mesh to
represent the device in the virtual scene.

The selectstart, select, and selectend events fired on an
XRSession indicate when the primary trigger, button, or ges-
ture of an XRInputSource is being interacted with, and can be
used to facilitate basic interaction without the need to observe
the gamepad state. The select event is a user activation event
and can be used to begin media playback, among other things.

There is also a corresponding set of squeezestart, squeeze, and
squeezeend events that are fired when either a grip button or
squeeze gesture is being interacted with. The squeeze event
also is a user activation event.

See the below listing example:

function onXRFrame(t, frame) {
// Queue a request for the next frame to keep

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.11 User Input 37

// the update loop going.
xrSession.requestAnimationFrame(onXRFrame);

// Loop through all input sources.
for (let inputSource of xrSession.inputSources) {
// Show the input source if it has a grip space
if (inputSource.gripSpace) {
let inputPose = frame.getPose(inputSource.gripSpace,

xrReferenceSpace);

scene.showControllerAtTransform(inputPose.position,
inputPose.orientation,
inputSource.handedness);

}
}

// Handle your rendering
);

2.11.1 Input Types

WebXR supports lots of different types of devices to handle
targeting and action inputs. These devices include but aren’t
limited to:

• Screen taps (particularly but not necessarily only on phones
or tablets) can be used to simultaneously perform both tar-
geting and selection.

• Motion-sensing controllers, which use accelerometers, mag-
netometers, and other sensors for motion tracking and tar-
geting and may additionally include any number of buttons,
joysticks, thumbpads, touchpads, force sensors, and so on
to provide additional input sources for both targeting and
selection.

• Squeezable triggers or glove grip pads to provide squeeze ac-
tions.

• Voice commands using speech recognition.
• Spatially-tracked articulated hands, such as haptic gloves can

provide both targeting and squeeze actions, as well as selec-
tion if outfitted with buttons or other sources of selection
actions.

• Single-button click devices.
• Gaze tracking (following the movements of the eye to choose

targets).

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

38 Chapter 2. Getting Started

2.11.2 Input Events

You manage inputs through event callbacks, such as when the
user clicks the screen or presses a button on a controller.

xrSession.addEventListener('select', onSelect);
xrSession.addEventListener('selectstart', onSelectStart);
xrSession.addEventListener('selectend', onSelectEnd);

xrSession.addEventListener('squeeze', onSqueeze);
xrSession.addEventListener('squeezestart', onSqueezeStart);
xrSession.addEventListener('squeezeend', onSqueezeEnd);

function onSelect(event)
{
// manage input event for the select

}
...

2.11.3 VR vs AR Input

Touch-based input (AR) You’ve got your demo running
but it doesn’t do much and isn’t really immersive, but you’ll add
these parts in later. For example, touch-based interactions are
used typically for inline or immersive-ar with tablet/phone
experiences. These are a bit simpler to use since you don’t
need any representation, the user just touches the screen and
you need to determine which object was selected in your 3D
scene.

Gaze-based input (VR) Typically this approach is used
when your implementation has a dedicated headset. The user
will look at something and you can extract this information,
based on the head pose. If you use the headset for picking
options, you’ll want to draw a cursor to help the user (show
what they’re aiming for and selecting). You might want to
draw a line or lazer from the headset to the target, but be
aware, it would come right out of the user’s head, and can
cause discomfort. Usually easier and more effective to draw a
target of some kind in from of the viewers gaze to let them
know what they’re look at or selecting.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.11 User Input 39

Figure 2.6: Gaze - Viewers head position and orientation
to identify the direction and target (e.g., ray-line intersection
test).

Figure 2.7: Pointer - The controller provides a pointer-based
means for interacting and selecting items in the virtual world.

Pointer-based input Users will use this type of input when
they have a hand-held controller, no matter what type of
degrees-of-freedom (DOF) is supported. In VR, you’ll typically
render a representation of it in your scene, so the user can see
where the controller is and where it is pointing. To represent
the pointing aspect, you typically fire a ray (or line) straight
from the virtual controller representation and potentially some
kind of cursor on an object that the user can interact with,
helping them to understand that something will happen if you
select that object.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

40 Chapter 2. Getting Started

2.12 End Presentation

WebXR may have the presentation of XR content ended by the
user-agent at any time.

WebXR applications may explicitly end the presentation of XR
content by calling xrSession.end(), at which point the XRSession

object becomes unusable. An end event is fired on the XRSession

when it is ended by either the application or user-agent.

For example, you can catch the event using the following listing
example:

xrSession.addEventListener("end", () => {
// XR presentation has ended. Do any necessary cleanup.

});

2.13 Summary (Putting it all to-
gether)

A complete minimum working example that runs (doesn’t do
much, just initializing the basic WebXR API and sets your up-
date loop going). The default is for the ‘inline’, so you can test
out your program first before plugging in extra XR hardware.

To help manage concepts, let’s define some typical functions
(common names and conventions). You’re not limited to these
functions, but these provide some standardization as you go
through the book - and identify key points for you to refer to
in subsequent programs. You’ll also add extra functions, for
example, to manage events for user input and graphics initial-
ization.

Aasync function xrInit() { /* 1 */

...
}

Bfunction onNoXRDevice() { /* 2 */

...
}

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

