
A Lightweight Rigid-Body Verlet Simulator
for Real-Time Environments

Ben Kenwright

Abstract—In this paper, we present a real-time rigid-body simula-
tion technique based upon the popular position-based integration
scheme (Verlet). The Verlet technique has gained popularity due
to its intuitiveness and simulation stability (e.g., coupled soft-
body systems, such as, cloths). We explain a simplified technique
based-upon the Verlet approach for creating a robust rigid-body
solution for dynamic environments (e.g., objects flying around
while interacting and colliding with one another). What is more,
we take the traditional particle-Verlet scheme and expand it to
accommodate both angular and linear components. With this
in mind, we formulate simple constraints (e.g., ball-joints and
collision-contacts) to reconcile and resolve coupled interactions.
Our algorithm works by approximating the rigid-body velocities
(angular and linear) as the different between the current and
previous states. Constraints are enforced by injecting corrective
transforms that ‘snap’ violating positions and orientations out
of error. The coupled rigid-body system is iteratively solved
through relaxation to help convergence on an acceptable global
solution. This addresses the issue of one constraint fighting
with another constraint. We estimate corrective measures and
iteratively apply updates to ensure the simulation correlates
with the laws-of-motion (i.e., moving and reacting in a realistic
manner). Our approach targets visually plausible systems, like
interactive gaming environments, by reducing the mathematical
complexity of the problem through ad-hoc simplifications. Finally,
we demonstrate our rigid-body system in a variety of scenarios
with contacts and external user input.

Keywords–simulation, verlet, interactive, real-time, rigid-body, colli-
sions, constraints

I INTRODUCTION

Interactive Environments Virtual environments are rich with
motion. Highly interactive worlds contain dynamic and complex
bodies. Bodies that fly around and bounce off one another.
Typically, these scenes need to ‘appear’ detailed and move in
a life-like way while running at real-time frame-rates. These
action packed scenes have characters falling, stones flying,
dust particles swooshing, and trees swaying. While we have
an abundance of moving objects, it is also important that
the user and objects are able to interact with one another.
A lightweight solution is sufficient, as we are concerned with
aesthetic properties, when buildings collapse, debris and dust is
flying around in a dynamic and realistic way. Combined with
forces from high-winds and impact explosions to produce an
overall visual effect that is satisfying and captivating. Hence, we
do not need an approach that is highly accurate but aesthetically
pleasing.

Interesting & Important An intuitive, stable, and efficient
rigid-body simulator is a valuable and important tool for any
real-time interactive environment. This enables us to create
emmersive dynamic worlds. The challenge is to synthesize
coupled and uncoupled motion in a realistic manner efficiently
with less emphasis on physical accuracy. We address engi-
neering trade-offs, that trade scientific precision for simplicity

and speed, while maintaining the fundamental rigid-body
motion mechanics (visually). The Verlet integration scheme
for calculating the equations of motion for rigid-bodies might
be less accurate than other integration methods, but possesses
favourable characteristics (i.e., it is inexpensive, stable and does
not require the computation of velocities).

Currently At the present time, rigid-body systems primarily
use Newtonian mechanics to solve the equations of motion
(e.g., velocity-impulses, penalty-forces, constrained Lagrangian
mechanics) [1]–[4]. The Verlet technique used in this paper
has primarily been used for point-mass systems and soft-body
simulations (cloths). For interactive media, however, we are
less concerned with accuracy but aesthetic qualities. In dynamic
situation (e.g., vehicles colliding, collapsing building, and
flying debris), approximations and errors often go unnoticed
(intersections and penetrations). Our lightweight approach
focuses on these situations.

Components A simulation is the imitation of the real-world
processes and their changes with respect to time. This includes
a number of different components that work in synergy, such as,
collision detection, resolution, coupled constraints and process
parallelisation. We concentrate on the dynamic equations for
simulating real-time interactive situations. The approach is
able to solve a variety of common constraint and produces
motions that correlate with physically-accurate models (i.e.,
classical mechanic formulations). Techniques include, velocity
impulses, penalty forces, constraint solving methods. Each
rigid-body is subject to a forces and torques (gravity and
wind) and constraints (ball-joints and contacts) to prevent
shapes interpenetrating with each other and the environment.
A relaxation technique is used to resolve these ‘concurrent’
constraints (help the system converge on a global solution and
reduce constraint fighting).

Contributions The key technical contributions of this paper
are: (1) the formulation of the Verlet integration scheme for
use in a real-time three-dimensional rigid-body simulator; (2)
show that a high precision solution is not essential for most
gaming situation and an uncomplicated second order velocity-
Verlet or position-Verlet works well enough; (3) demonstration
of the Verlet method as an effective solution for interactive
environments (creating realistic motion for real-time systems
and supporting arbitrary interactions); simulation and (4) the
parallelisation of the technique using the graphical processing
unit (GPU).

II RELATED WORK

Quantum Mechanics to Interactive Gaming Environments
The Verlet integration scheme was born in the molecular
dynamics field [5], but later gained recognition in other
domains, such as, computer graphics [6]. During the 2001
Game Developer’s Conference, Thomas Jakobsen [7] presented



a simulation technique for point-mass systems, such as, clothes
and other soft bodies problems. The particle-Verlet was proven
as a viable commercial solution in the video game Hitman:
Codename 47 [8] - providing an efficient and stable rag-
doll technique (i.e., dead human bodies). Of course, due
to the simplicity and stability of the Verlet technique, the
particle-Verlet method was expanded to include rigid-bodies.
Porcino [9] presented a working application of a Verlet-Based
physics engine. At the same time, Baltman and Radeztsky [10],
presented a Verlet integration and constraints system for a six
degree of freedom rigid-body physics simulation.

On a side note, it can be said that the Verlet technique is
a modified impulse solution, since it instantaneous changes
the position and velocity (i.e., velocity impulses). Another
key thing to remember is, the basic Verlet integration scheme
does not handle variable frame rates well. However, with a
small modification, we can adapt the technique to account for
changing time-steps.

Verlet Flavours The Verlet integration technique comes in
three basic types (see Section VII for further details):

• Position-Verlet [11]
• Leapfrog-Verlet [12], [13] (Leap-frog Verlet method which

is explained clearly by Hut et al. [14]).
• Velocity-Verlet

Our Approach We present a method for efficiently modelling
complex rigid-body interactions in dynamic situations through
lightweight approaches. We employ an ad-hoc solution based
on the popular Verlet-system to reduce overheads yet maintain
core aesthetic qualities. Our lightweight approach eases the
memory and computational overhead for less accurate dynamic
situations.

The Newton-Euler formulation [15] for a 6 degrees-of-freedom
(dof) rigid body is given by Equation 1:

f = ma

τ = ω × (Iω) + Iα
(1)

where f is force, τ torque, m mass, a acceleration, I inertia
tensor, ω angular velocity, and α is the angular acceleration.
For our simplified approach, we neglect the angular component
from the Coriolis (ω × (Iω)) leaving us the simpler Equation
2:

f = ma

τ = Iα
(2)

III METHOD

Verlet vs Euler (or Runge-Kutta) The advantages and
disadvantages of a technique depend upon its target use. As
an aesthetically pleasing simulation solution is more useful
compared to a more accurate scientific model for interac-
tive gaming environments. The different integration methods
for interactive physics-based simulation possess numerous
advantages and disadvantages. We show the limitations of
a position-based approach (i.e., modified Verlet technique),
including experiments to support and software engineering

workarounds. We investigate the trade-offs between a motion
appearing ‘plausible’ but not being realistic due to numerical
simplifications - but provides improved stability in general [15],
[16].

Constraints, Collisions, and Contacts One way of reacting
to collisions is to use a penalty-based system which basically
applies a set force to a point upon contact. The problem with
this is that it is very difficult to choose the force imparted. Use
too strong a force and objects will become unstable, too weak
and the objects will penetrate each other. Another way is to
use projection collision reactions which takes the offending
point and attempts to move it the shortest distance possible to
move it out of the other object. The Verlet integration would
automatically handle the velocity imparted via the collision
in the latter case, however note that this is not guaranteed to
do so in a way that is consistent with collision physics (that
is, changes in momentum are not guaranteed to be realistic).
Instead of implicitly changing the velocity term, you would
need to explicitly control the final velocities of the objects
colliding (by changing the recorded position from the previous
time step). The two simplest methods for deciding on a new
velocity are perfectly elastic collisions and inelastic collisions.
A slightly more complicated strategy that offers more control
would involve using the coefficient of restitution. Our rigid-
body Verlet integration (in which velocity is implicit) corrects
constraint violations by implicitly change the angular and linear
velocities (analogous to an applied spring forces).

Connecting Newtonian & Verlet A first order simplectic
Euler integration (sometimes called the Euler-Cromer) - the
reason the we call the integrator simplectic is the modified
velocity (vn+1) is used to update the position - helping to
improve stability (i.e., semi-implicit feedback).

vn+1 = vn + a ∆t

xn+1 = xn + vn+1 ∆t
(3)

We approximate velocity as:

v =
xn − xn−1

∆t
(4)

We substitute this into our simplectic Euler for vn:

vn+1 =

(
xn − xn−1

∆t

)
+ a ∆t

xn+1 = xn + vn+1 ∆t

(5)

Combining into a single representation for pn+1:

xn+1 = xn + [

(
xn − xn−1

∆t

)
+ a ∆t] ∆t

= xn +
xn − xn−1

∆t
∆t+ a (∆t)2

= xn + (xn − xn−1) + a (∆t)2

= 2xn − xn−1 + a (∆t)2

(6)

We are able to calculate the approximated velocities as vn =
1

2∆t (xn+1 − xn−1), since having the velocities is frequently
useful for some calculations.



Rotation & Translation We use quaternions to represent a
rigid-body’s rotation. This represention is intuitive especially
for the calculation of rotational constraints. The concatenation
and difference calculation of quaternions is performed through
multiplication and conjugate. Using traditional quaternion an-
gular integration (see Section VIII), we formulate the equations
for the rigid-body Verlet:

Translation:
xn+1 = xn + (xn − xn−1) + a (∆t)2

Rotation:

qn+1 = qn (qn q
∗
n−1) +

1

2
(α(∆t)2)(qn)

(7)

where a is linear acceleration, α = τ
I is the angular acceleration,

x represents the translation and q the orientation as a unit-
quaternion.

Penalties For traditional Newtonian mechanics, we have the
well known connection between force and torque:

τ = r × f (8)

where τ is the torque, r is the offset from the centre of mass
to the point we are applying the force f . Equation 8, enables
us to calculate penalty forces at specific points on a rigid-body,
so we are able to inject corrective motions.

For the particle-Verlet constraint solution, we correct constraint
errors by ‘moving’ (or snapping) each particle’s position out
of error. However, for our rigid-body solution, we have both
a rotational and translational component. Hence, we use the
founding formula given in Equation 8 to derive Equation 9
below (with reference to Figure 1).

∆θ = r × n̂∆d

∆x = ((r × n̂∆d) × n̂) · n̂ (9)

∆x provides the translational penalty, and ∆θ provides the
axis-angle penalty that we convert to a quaternion.

The penalty corrections are applied over multiple iterations in
combination with a relaxed over time to provide stability at the
expense of error. This enables the system to converge on an
acceptable solution and reduce constraint fighting. As shown
in Equation 10 below, we multiple the solution by a scalar cr
to help the simulation converge. This is especially important
for coupled problems, multiple contacts and chains of items.

∆θ = (r × n̂∆d ) cr
∆x = (((r × n̂∆d) × n̂) · n̂ ) cr

(10)

Velocity-Verlet & Position-Verlet In this paper, we focus
on the ‘position-Verlet’ technique, however, there are different
types of Verlet integration schemes. A related, and more
commonly used, algorithm is the velocity-Verlet algorithm [17],
similar to the Leapfrog method [14], except that the velocity and
position are calculated at the same value of the time variable
(Leapfrog does not, as the name suggests). This uses a similar
approach but explicitly incorporates velocity, solving the first
time step problem in the basic Verlet algorithm.

Figure 1. Penalty Correction - Corrective position and orientation penalty.

Time-Corrected Verlet A disadvantages of the Verlet method
is it handles changing time steps badly, i.e., it is not a self-
starter (it requires 2 steps to get going, so initial conditions
are crucial), and it is unclear from the formulation how it
handles changing accelerations. The modified Verlet integrator
is referred to as the Time-Corrected Verlet (TCV) and is shown
below with its original counterpart:

Original Verlet:
xn+1 = xn + (xn − xn−1) + a(∆t)2

Time-Corrected Verlet:

xn+1 = xn + (xn − xn−1)
∆tn

∆tn−1
+ a(∆tn)2

(11)

Damping The Verlet equations can also be modified to
incorporate a simple damping component (for instance, to
emulate air friction):

Without Damping:
xn+1 = 2xn − xn−1 + a(∆t)2

With Damping:
xn+1 = (2 − β)xn − (1 − β)xn−1 + a(∆t)2

(12)

where β is the damping coefficient between 0.0 and 1.0. For the
quaternion implementation, we integrate in damping in a similar
way to the translational damping, but use an interpolation
calculation.

No Silver Bullet Each physics-based technique offers pros
and cons, with respect to simplicity, speed, accuracy, and
stability - and we find that there is ‘no’ one shoe fit all -
a best solution for every situation. However, for interactive
environments, such as, video games, the Verlet technique offers
provides certain advantages, as we are interested in asthetic
qualities - compared to physical accuracy. To summarize, the
key points:

• Pros
◦ Quick to process
◦ Practically any geometry can be simulated
◦ Well suited for soft-body systems
◦ Integration with other areas of physics, such as, pool balls

and rope/cloth
◦ Time-invariant (play-back)

• Cons
◦ Has been described as ‘bouncy’ with few iterations



◦ Inaccuracies develop from relaxation
◦ Requires user intervention to get the collision detection

and response to feel right

Pros

Parallelisation We distribute the work load of the simulation
by double buffering the simulation parameters. Each rigid-body
updates itself and writes its modified position and orientation
to the next buffer. Once every rigid-body has updated the next
buffer, the current and next buffer are swapped and the system
is integrated forward in time (as shown by Westwood et al.
[18]).

Figure 2. Joint Constraint - Connecting relative rigid-body offsets.

IV EXPERIMENTAL RESULTS

Simulation test-cases:

• single rigid-body falling and bouncing with ground
• number of rigid-bodies interacting
• chain of interconnected objects (e.g., bridges and ragdolls)
• stacking objects
• parallelisation of the constraint algorithm by ping-ponging

updates between two copies of memory on the GPU

The technique is simple to implement and moves in a realistic
manner (see Figure 3 and Figure 5). However, as shown in
the simulations, the approach has some issues, for example,
long chains of objects settle in a configuration that appears
incorrect (see Figure 2). In our implementation, we did not
cache contact points between frames, hence we observed a
small amount of jittering, especially when multiple constraints
influence a single rigid-body. For dynamic situations, with lots
of interacting rigid-bodies flying around (see Figure 6, the
simulation produced acceptable results.

V DISCUSSION

Overall the technique is simple to implement and produces
asthetically pleasing results in the majority of cases for dynamic
situations. To create more accurate solutions and solve specific
cases, such as, stacks and resting bodies, the approach would
require user intervention and tuning of parameters. We did
not include any advanced techniques to help improve the
simulations realism and performance, for instance, shock-
propagation, sleeping, and contact caching.

We have concentrated on a rigid-body system, on the other
hand, the approach we present in this paper is easily combined
with other techniques (particles, deformations, and soft-bodies).

VI CONCLUSION

We propose a lightweight rigid-body simulation method that is
stable, fast, and flexible enough for used in real applications,
like computer games. Future work would be the development
of additional constraint types. We also considered the trans-
lational and rotational components separately, while a more
esoteric solution to investigate would be the unification of the
mathematics using dual-quaternions. The creation of a more
complex joints/constraints types using the Verlet integration
model would be useful for simulating intricate systems.

Figure 3. Simple Test Cases - A set of basic simulation tests to show the
working mechanics of motion.

Figure 4. Chain Rigid-Bodies - 21 rigid-bodies connected via ball-joint
constraints. The figure shows how the chain is dropped horizontally and
oscillates back-and-forth due to gravity and damping. However, at the end of
the simulation the chain settles in a straight line (i.e., not the ideal curved arc
due to the weight distribution). We emphasis it here - but point out that in the
majority of cases would not be noticed by the user (e.g., in dynamic situations
or a systems with only a few links).

References
[1] A. Boeing and T. Bräunl, “Evaluation of real-time physics simulation

systems,” in Proceedings of the 5th international conference on Computer
graphics and interactive techniques in Australia and Southeast Asia.
ACM, 2007, pp. 281–288. 1



Figure 5. Random Cubes - 200 rigid-body cubes falling.

Figure 6. Random Cubes - 1000 rigid-body cubes falling. Our lightweight
technique is well suited to ‘dynamic’ situations (multiple rigid-bodies flying
around) - capturing the mechanics of motion and the responsiveness during
impacts and collisions.

[2] R. Smith et al., “Open dynamics engine,” 2005. 1
[3] E. Coumans, “Bullet physics engine,” Open Source Software:

http://bulletphysics. org, vol. 1, 2010. 1
[4] A. Bond, “Havok fx: Gpu-accelerated physics for pc games,” in

Proceedings of Game Developers Conference 2006, 2006. 1
[5] E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel, “Algorithms for

constrained molecular dynamics,” Journal of computational chemistry,
vol. 16, no. 10, 1995, pp. 1192–1209. 1

[6] D. Rozmanov and P. G. Kusalik, “Robust rotational-velocity-verlet
integration methods,” Physical Review E, vol. 81, no. 5, 2010, p. 056706.
1

[7] T. Jakobsen, “Advanced character physics,” in Game Developers
Conference, 2001, pp. 383–401. 1

[8] Eidos Interactiven, “Hitman: Codename 47,” in Video Game, 2000. 2
[9] N. Porcino, “(LucasArts), Writing a verlet-based physics engine,” Game

Programming Gems 4, April 2004, pp. 231–241. 2
[10] R. Baltman and R. Radeztsky Jr, “Verlet integration and constraints

in a six degree of freedom rigid body physics simulation,” in Game
Developers Conference, 2004. 2

[11] D. Ramtal and A. Dobre, “Numerical integration schemes,” in The
Essential Guide to Physics for Flash Games, Animation, and Simulations.
Springer, 2011, pp. 443–459. 2

[12] C. Raymaekers, E. CUPPENS, K. CONINX, and L. VANACKEN, “A
comparison of different techniques for haptic cloth rendering,” 2005. 2

[13] G. van den Bergen and D. Gregorius, Game physics pearls. CRC Press,
2010. 2

[14] P. Hut, J. Makino, and S. McMillan, “Building a better leapfrog,” The
Astrophysical Journal, vol. 443, 1995, pp. L93–L96. 2, 3

[15] B. Kenwright and G. Morgan, “Practical introduction to rigid body
linear complementary problem (lcp) constraint solvers,” Algorithmic
and Architectural Gaming Design, 2012, pp. 159–205. 2

[16] B. Kenwright, Computational Game Dynamics. Digital Media (ISBN:
978-1501018398), 2016. 2

[17] P. F. Batcho and T. Schlick, “Special stability advantages of position-
verlet over velocity-verlet in multiple-time step integration,” The Journal
of Chemical Physics, vol. 115, no. 9, 2001, pp. 4019–4029. 3

[18] J. D. Westwood et al., “A gpu accelerated spring mass system for
surgical simulation,” Medicine Meets Virtual Reality 13: The Magical
Next Becomes the Medical Now, vol. 111, 2005, p. 342. 4

VII APPENDIX A

Position Verlet Algorithm takes the form:

xn+1 = 2xn − xn−1 + a∆t2

vn =
1

2∆t
(xn+1 − xn−1)

(13)

Verlet Leapfrog Algorithm takes the form:

vn+1/2 = vn−1/2 + a∆t

xn+1 = xn + vn+1/2∆t

vn+1 =
1

2
[vn+1/2 + vn−1/2]

(14)

Velocity Verlet Algorithm takes the form:

xn+1 = xn + vn∆t+
an
2

∆t2

vn+1 = vn + (an+1 + an)
∆t

2

(15)

VIII APPENDIX B: QUATERNION INTEGRATION

qn+1 = qn + (
dq

dt
) dt (16)

dq

dt
= lim
h→0

q(t+ h) − q(t)

h

=
1

2
ω q

(17)


	Introduction
	Related Work
	Method
	Experimental Results
	Discussion
	 Conclusion
	References
	Appendix A
	Appendix B: Quaternion Integration

