
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Rigid Body Dynamics
Benjamin Kenwright1*

Abstract
The dynamics of a rigid body system is defined by its equations of motion. Rotational motion is more complicated than linear
motion, and only the motion of rigid bodies will be considered here. Combining both rotational and linear motion to our
physics simulator allows us to create full six degrees of freedom motion. This section combines the principles of rotational
and translational movement using numerical integration to resolve Newtonian mechanics in an iterative manner.

Keywords
Torque, Rigid Body, Angular Velocity, Inertia, Integration, Euler, Verlet, Damping, Physics, Numerical Integration, Real-Time,
Video Games, Interactive, Classical Mechanics, C++

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Figure 1. Rigid bodies - Rigid bodies enable your
simulator objects to act under the control of physics. A rigid
body can receive forces and torque to make your objects
move in a realistic way. Any simulation object must contain a
rigid body to be influenced by gravity, act under forces, or
interact with other objects through the physics engine.

Contents

Introduction 1

1 Angular Mathematics 1

2 Radians 2

3 Torque and Inertia 2

4 Symmetrical Objects 3

5 Non-Symmetrical Objects 3

6 Inertial Matrix for Cuboid and Spherical Objects 3
6.1 Solid Sphere . 4
6.2 Solid Cuboid . 4

7 Simulation 4
7.1 Torque . 4
7.2 Calculation of Acceleration 4
7.3 Numerical Integration . 5

8 Implementation 5

9 Summary 5

Acknowledgements 5

Introduction
Overview Our physics simulation is now capable of moving
objects around; however, that movement probably looks rather
unconvincing for anything other than particles. Larger objects,
such as balls, crates, asteroids, and robots will behave a lot
more believably if they rotate as they move. When you throw
a beach-ball, a banana, or a brick, it doesn’t simply move
through the air at exactly the orientation that it was in when it
left your hand, it rotates. When it subsequently bounces off
something, it rotates at a different speed around a different
axis. In this practical, we will apply ideas from previous
practicals for numerical integration to the laws of angular
motion.

Essentials In the earlier practicals, we discussed the con-
cept of rigid bodies and distinguished them from a particle-
based system by the introduction of angular velocity and
orientation. As rigid bodies have some volume (i.e., they
are a constant shape and size), their orientation in space is

Workshop Series: Rigid Body Dynamics — 2/6

important and must be simulated by the physics simulation.
Before we discuss how this is implemented, we will take a
quick refresher course on what angular motion is, and how it
is represented mathematically.

1. Angular Mathematics
Principles and Concepts The orientation of an object, and
how quickly that orientation changes, are modelled through
angular mathematics. The concept is pretty much identical
to that of linear motion, so we have direct counter-parts to
position, velocity, and acceleration. These are the angle or
orientation θ , the angular velocity ω , and the angular acceler-
ation α . As with linear motion, these are three dimensional
parameters represented by vectors, with each member con-
taining the angular information about the x, y and z axes
respectively.

Relationship The relationship between angle, angular ve-
locity, and angular acceleration is the same as for their linear
equivalents, in that the angular velocity is the rate of change
of the angle over time, and the angular acceleration is the rate
of change of angular velocity over time as given by Equation
1 below:

ω =
θ

dt

α =
ω

dt

(1)

Conversely, angular velocity is the integral of angular
acceleration over time, and angle is the integral of angular
velocity over time, as given by Equation 2 below:

ω =
∫

α dt

θ =
∫

ω dt
(2)

Clearly, we can use the same numerical integration tech-
niques to solve these equations as we used for linear motion
in the previous practical. In order to achieve this, we need to
be able to calculate the angular acceleration of our simulated
objects from the forces acting upon them.

2. Radians
The basic unit for angular motion is the Radian. While it is
possible to store rotations as either degrees or rotations, it is
much more straightforward, and consistent, to use radians.
If you need to use trigonometric functions, such as sine and
cosine, they will expect the parameters to be given in radians.
An angle expressed in radians is defined as the ratio of the
arc length s swept out by the angle θ , to the radius of the
corresponding circle r.

θ =
s
r

(3)

Consequently, a full rotation of 360deg is expressed as
2π radians; half of a complete revolution (i.e., 180deg) is π

radians and so on. In most physics simulations, if an angle
gets bigger than 2π radians then it is reduced by 2π radians.
This has no effect on the mathematics, or the simulation, as
the orientation is identical (i.e., if something has rotated by
2π radians, then it is back at the original orientation of zero
radians). To give an example, imagine the wheel on a car in
a racing game - as the car moves along the track, the wheel
rotates repeatedly; if we don’t reset the orientation every
revolution, then the angle will quickly become extremely high
with no additional benefit or accuracy. This is achieved in
C++ as shown below in Listing 1:

Listing 1. Wrapping Angular Values
1 if (curAngle > TWOPI2) curAngle −= TWOPI;
2 if (curAngle < TWOPI2) curAngle += TWOPI;

Note, that a defined constant is used (TWOPI) in Listing 1,
instead of multiplying π by 2.0 for every object. Furthermore,
note that this is only checked for the angle - it is acceptable
for an angular velocity or even acceleration to exceed 2π , if
something is spinning very fast.

3. Torque and Inertia

As with the linear motion of the objects simulated by the
physics engine, we need to relate the angular acceleration of
a rigid body to the forces acting upon it. This is achieved
through the use of Torque (τ) and Moment of Inertia, which
can be thought of as the angular equivalents of Force and Mass.
The relationship between the torque τ acting on a body to the
inertia I of that body and the resulting angular acceleration α

is given by Equation 4:

τ = I α (4)

This is the rotational equivalent to Newton’s second law for
linear motion F = ma.

The moment of inertia of a rigid body represents the
amount of resistance a body has to changing its state of ro-
tational motion (i.e., its angular acceleration). The moment
of inertia depends on how the mass is distributed about the
axis. For a given total mass, the moment of inertia is greater
if more mass is farther from the axis than if the same mass is
distributed closer to the axis. The classic example of this is
the ice dancer who brings her arms vertically above her body
to increase the speed at which she is spinning, or holds her
arms out horizontally to slow down her spinning speed.

As we are simulating three-dimensional worlds, a scalar
value of I does not contain sufficient information to describe
the inertial behaviour of a body - the body’s shape and the
axis of rotation have an effect on its behaviour. We therefore
introduce the concept of the Inertia Matrix or Inertia Tensor.
First, we’ll expand our equation for angular acceleration to
express the torque and acceleration as vectors, and the inertia
tensor as a matrix:

www.xbdev.net/physics

Workshop Series: Rigid Body Dynamics — 3/6

 τx
τy
τz

=

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 αx
αy
αz

 (5)

Each element of the inertia matrix represents the effect a
torque around a particular axis has on the acceleration around
a particular axis. So Ixx represents the effect that a torque
around the x axis has on acceleration around the x axis, Ixy
represents the effect that a torque around the x axis has on
acceleration around the y axis, etc. For a completely symmet-
rical object, a torque around the x axis will cause acceleration
around the x axis only; however, for more complex objects a
torque around a particular axis may cause acceleration around
the other two axes. For example, an evenly weighted cube
floating in space is a completely symmetrical object. Apply-
ing a rotational nudge around its x axis will cause it to spin
around its x axis only; the angular velocity around its y and
z axes will remain zero. However, if we attach a very heavy
lump to one of the cube’s corners, then this will affect how it
spins - a nudge around the unevenly weighted cube’s x axis
will cause a wobble around the other two axes, as the inertia
of the heavy lump drags the cube off its rotation. As a further
example, reconsider the spinning skater with her arms held
out horizontally - if you could attach a heavy weight to one of
her arms, she would wobble over and fall almost immediately,
the poor thing.

Before we move on, there are a couple of important prop-
erties of the inertia matrix that we will discuss in a little more
detail:
• The diagonal elements (Ixx, Iyy, Izz) of the matrix must

‘not’ be zero
• The matrix must be symmetrical, that is Ixy = Iyx, Ixz =

Izx, and Izy = Iyz

4. Symmetrical Objects

Multiple elements in a game can be simulated by the physics
system as completely symmetrical objects - i.e. the objects’
weights are evenly distributed around the their centre of grav-
ity - even many objects which, in the real world, would not
actually be symmetrical, such as barrels, bricks, and crates.

As we have discussed, a completely symmetrical object
only rotates around the axes which have torque applied to
them. This behaviour is defined in the inertia matrix by en-
suring that the non-diagonal elements are set to zero. So the
inertia matrix for a symmetrical object takes the form: Ixx 0 0

0 Iyy 0
0 0 Izz

 (6)

The diagonal elements must be non-zero. To understand
why, consider the equation for the x axis torque:

τx = Ixx αx (7)

This equation defines the amount of torque required to
instigate an angular acceleration around the x axis. The lower
the value of Ixx, the higher the angular acceleration αx that
is produced by a particular amount of torque τx. If the iner-
tia Ixx is zero, then an infinite angular acceleration would be
produced by that same value of torque. This is clearly unde-
sirable, and indeed physically impossible, which is why the
diagonal elements of the inertia tensor must be non-zero. If
your physics engine is exhibiting weird behaviour for symmet-
rical objects, then you should test that the diagonal elements
are non-zero, and that the non-diagonal elements are zero.

5. Non-Symmetrical Objects
In the real world, almost no objects are symmetrical. However,
in practice, e.g., virtual gaming environments, simulating non-
symmetrical objects is computationally expensive compared
to simulating symmetrical objects, so care should be taken
that the extra computation involved is actually worthwhile
for the intended effect. Simulating the rotational behaviour
of non-symmetrical bodies requires the impulse matrix to be
fully populated - i.e., some of the non-diagonal elements are
not zero.

The diagonal elements must be non-zero, for the same
reasons as described above for symmetrical bodies (i.e. a
zero element in the diagonal will result in errors related to an
infinite angular acceleration).

Mathematically, the elements of the inertia matrix are
calculated by considering the rigid body as a continuous set of
connected particles, in fixed positions relative to one another,
and integrating their momentum across the volume of the body.
We won’t go into the details of this here, but the equations for
calculating the diagonal elements are:

Ixx = M
∫
V

(y2 + z2) dV

Iyy = M
∫
V

(x2 + z2) dV

Izz = M
∫
V

(x2 + y2) dV

(8)

and the non-diagonal elements are:

Ixy =−M
∫
V

(xy) dV Iyx =−M
∫
V

(yx) dV

Ixz =−M
∫
V

(zy) dV Izx =−M
∫
V

(zx) dV

Iyz =−M
∫
V

(yz) dV Izy =−M
∫
V

(zy) dV

(9)

It can be seen that the equations for Ixy and Iyx are equiva-
lent. Similarly, for the other two pairs of diametrically oppo-

www.xbdev.net/physics

Workshop Series: Rigid Body Dynamics — 4/6

site elements. Hence, the inertia matrix must be symmetrical
for meaningful rotational simulation. If your physics engine is
exhibiting weird behaviour for non-symmetrical objects, then
you should test that the inertia matrix is symmetrical, and that
the diagonal elements are non-zero.

6. Inertial Matrix for Cuboid and
Spherical Objects

The majority of objects simulated in your physics engine can
be represented either as a solid sphere, or as a solid cuboid,
so we will look at how to calculate the inertia matrix for such
shapes. Remember, that the rendered shapes of the graphical
objects are unlikely to be perfect spheres or cuboids, but for
the purposes of physical simulation, most game objects can
be represented by one or more basic shapes of this type. For
example, a girder falling from a collapsing building can be
simulated in the physics simulation as a long cuboid, while a
roughly hewn asteroid can be simulated by a sphere. This idea
of having two representations of a game object (the graphical
shape which is rendered, and the physical shape which is sim-
ulated) is central to game development, and will be discussed
in much more detail when we move on to collision detection
and response.

6.1 Solid Sphere
The equation for calculating the inertia of a solid sphere of
radius r and mass m is:

I =
2mr2

5
(10)

and the inertia matrix is constructed from setting the diagonal
elements equal to this value, and the non-diagonal elements
equal to zero.  I 0 0

0 I 0
0 0 I

 (11)

Hence, the sphere rotates around each axis equally, with
no non-symmetrical behaviour; the matrix is symmetrical and
the diagonal values are non-zero. If for some reason, you
require your sphere to rotate more easily about a specific axis,
then the value of I for that axis should be reduced slightly; and
for a stiffer rotation response, the value should be increased
somewhat.

6.2 Solid Cuboid
The equations for calculating the inertia of a solid cuboid of
length l, height h, width w and mass m are:

Ixx =
1

12
m(h2 +w2)

Iyy =
1

12
m(l2 +w2)

Izz =
1

12
m(h2 + l2)

(12)

again the inertia matrix is constructed from setting the diag-
onal elements equal to these values, and the non-diagonal
elements equal to zero. Ixx 0 0

0 Iyy 0
0 0 Izz

 (13)

So the cuboid rotates around each axis according to how
big it is along that axis, with no non-symmetrical behaviour;
the matrix is symmetrical and the diagonal values are non-zero.
If for some reason, you require your cuboid to rotate more
easily about a specific axis, then the value of I for that axis
should be reduced slightly; and for a stiffer rotation response,
the value should be increased somewhat.

7. Simulation
7.1 Torque
We are getting closer to calculating the angular acceleration
caused by a force on a rigid body. We have seen how to
define the body’s resistance to angular change with the inertia
tensor, and we know the relationship between that inertia, the
angular acceleration of the body, and the torque. So the only
remaining issue is how to calculate the torque.

Figure 2. Calculating Torque - Relationship between
linear and rotational force (i.e., torque).

You will recall that the torque τ produced by force F at
distance r from the pivot point is calculated from:

τ = dF (14)

As we are simulating in three dimensions, the torque must
be calculated for each of the three axes. This is achieved by
taking the cross product of the distance vector and the force
vector, as shown below in Equation 15:

τ = r×F (15)

We have already calculated the force F acting on an object
in the previous practical, by resolving all the active forces at
each step of the simulation. The distance r is simply the vector
between the object’s centre of gravity and the position on the
surface of the body where the force is applied. This position
will become important in later practicals as we move on to
collision detection and response.

www.xbdev.net/physics

Workshop Series: Rigid Body Dynamics — 5/6

7.2 Calculation of Acceleration
Now we have all the information required to calculate the
angular acceleration of a body. The equation which we use is:

τ = I α (16)

As τ and α are three dimensional vectors, and I is a three
dimensional matrix, we must calculate the inverse of the iner-
tia matrix ℑ−1, and calculate the angular acceleration from:

α = I−1
τ (17)

Calculating the inverse of a matrix can be computation-
ally expensive. For ‘diagonal’ matrices; however, it is very
straightforward as each diagonal element is simply replaced
by its reciprocal, while the non-diagonal elements remain zero.
This means that it is straightforward to calculate the inverse
inertia matrix for symmetrical objects. For non-symmetrical
objects, a full matrix inverse calculation must be performed.
There are functions readily available to do this. It should also
be noted that, as the shape of rigid bodies does not change,
the inverse inertia matrices can be calculated at load time (or
in a pre-load step in the tool-chain), so that they do not need
to be calculated every iteration of the simulation.

7.3 Numerical Integration
We have discussed how to calculate the angular acceleration
of a rigid body caused by forces acting on that body. The next
step is to translate that acceleration into an angular velocity
and orientation, in order to spin and rotate our objects in the
virtual world. This is achieved through the same numerical
integration methods as for linear motion. The basic equation,
at the heart of the numerical integration of angular velocity is:

θn+1 = θn +ωn ∆t (18)

which is directly analogous to the linear calculation, and the
implementations of Explicit and Implicit Euler Integration,
Symplectic Euler Integration and Verlet Integration follow
from that in exactly the same way as for linear motion. So
the equations used by Semi-Implicit Euler Integration (or
Symplectic Euler Integration) to calculate the orientation of
a body from its angular acceleration for each frame of the
simulation are:

ωn+1 = ωn +αn ∆t

θn+1 = θn +ωn+1 ∆t
(19)

In C++ these equations are encoded as follows (note that
the order of these two lines of code is very important, as the
velocity must be calculated before it is used to calculate the
orientation):

1 // Semi−Implicit Euler
2 NextAngularVelocity = ThisAngularVelocity +←↩

ThisAngularAcceleration ∗ dt;
3 NextAngularPosition = ThisAngularPosition +←↩

NextAngularVelocity ∗ dt;

8. Implementation

The aim of this practical session is to expand your physics
simulation understanding to account for rotational behaviour.
You will construct a set of algorithms which calculate the
torque acting on a body, calculate the angular acceleration
caused by that torque, and then iteratively solve the differen-
tial equations governing the rotation of the body, in order to
calculate its orientation and angular velocity at each frame
of the simulation. To demonstrate that the physics update is
working, you will add spinning to your rigid body objects.

Steps The steps of the algorithm which you will implement
are:

1. Calculate the inertia matrix for our physics shapes, and
the inverse inertia matrix, before starting the simulation

2. For each step of the simulation, calculate the torque
acting on each object

3. Multiply the inverse inertia matrix by the torque to
calculate the angular acceleration

4. Use Symplectic Euler Integration to calculate the angu-
lar velocity and the orientation from the angular accel-
eration

9. Summary

We have discussed how torques are used to calculate the ro-
tation of bodies. We have discussed how to expand our nu-
merical integration scheme, and how to use it to calculate
the angular velocity and orientation of an object from its an-
gular acceleration. The concept of moment of inertia was
introduced and we added inertia tensors to our simulation,
allowing objects to resist rotational forces. This concludes the
work on moving objects around in our simulated world.

Acknowledgements

We would like to thank all the reviewers for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this article more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the article clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with cloth effects. So if you can provide any advice,
tips, or hints during from your own exploration of simulation
development, that you think would be indispensable for a
student’s learning and understanding, please don’t hesitate to
contact us so that we can make amendments and incorporate
them into future practicals.

www.xbdev.net/physics

Workshop Series: Rigid Body Dynamics — 6/6

Recommended Reading
Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204

Kinematics and Dynamics Paperback. Kenwright. ISBN: 978-
1539595496

Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104

Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165

Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398

Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971

Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

www.xbdev.net/physics

	Introduction
	Angular Mathematics
	Radians
	Torque and Inertia
	Symmetrical Objects
	Non-Symmetrical Objects
	Inertial Matrix for Cuboid and Spherical Objects
	Solid Sphere
	Solid Cuboid

	Simulation
	Torque
	Calculation of Acceleration
	Numerical Integration

	Implementation
	Summary
	Acknowledgements

