
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Collision Detection
(Narrow)
Benjamin Kenwright1*

Abstract
We explain various narrow-phase collision detection algorithms. The narrow-phase collision detection provides accurate
contact information (e.g., penetration depth and contact normal) down to the polygonal level. We build on the algorithms and
their practical implementations for real-time environments, such as video games.

Keywords
Collision Detection, Intersection, Sphere-Sphere, Box-Plane, Axis Aligned Bounding Box, Broad, Narrow, Physics, Penetration
Depth, Contact Normal, Real-Time, Video Games, Interactive, Classical Mechanics, C++

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Figure 1. Narrow Phase - Narrow phase collision detection
checks individual pairs of bodies carefully for accurate
contact information (e.g., contact normals and penetration
depths).

Contents

Introduction 2

1 Collision Detection Algorithms 2

2 Convex Shape Intersection 2
2.1 Cross Product Method . 2

2.2 Plane Equation Method . 3

3 Concave Shape Intersection Part 1 4

4 Line-Line Intersection 4

5 Concave Shape Intersection Part 2 5

6 Implementation 5

7 Summary 5

Acknowledgements 6

Introduction
Overview In this practical, we discussed the concept of
splitting the collision detection algorithms into a high level
broad-phase and the lower level narrow-phase. We examine
the algorithms typically used during narrow-phase, since they
are indispensable for a physics-base system, and introduce the
broad-phase techniques in later practicals as computational
speed becomes an issue. For narrow-phase collision systems,
we turn our attention to a series of algorithms for complex
collision tests, which can be employed for detailed shapes at a
polygonal level. As ever, the more complex and accurate the
algorithm, the more computationally expensive it is, so care
needs to be taken that these routines are only applied in cases
where they are of benefit. The broad-phase methods which we
discuss later, will be employed later to cull almost all potential
collisions, so the remaining list of possible intersections is
sufficiently small to justify these more detailed tests.

In this practical, we discuss and implement various col-
lision detection algorithms. As we are able to move objects
around the three-dimensional simulated world in a believ-
able manner; however, if two of our simulated objects meet,
they just pass through one another like ghosts - i.e. although
they move through free space like believable physical entities,
they have no physical presence so they do not bounce off one

Workshop Series: Collision Detection
(Narrow) — 2/6

another, or come to rest one alongside the other.

Essentials The first step toward adding this physical pres-
ence is to detect when two objects have collided. For each
frame of the simulation, we calculate the position of our simu-
lated objects - if the new position of two of our objects causes
an intersection of those objects, then we need to push them
back apart. Later practicals will deal with how we actually
push them apart; for now we will concentrate on identifying
when such an intersection has occurred, and how we calculate
the data required to believably move two colliding bodies
apart.

1. Collision Detection Algorithms
Principles and Concepts This section examines a series
of increasingly complex collision detection algorithms for use
during narrow-phase. There are no hard and fast rules for
when each test should be employed; the factors of efficiency,
and player immersion (i.e. how important the accuracy of a
particular collision check is to appear realistic to the player)
must be accounted for. For clarity and understanding the
diagrams are presented in two dimensional form; however,
the principles work for both 2D and 3D.

It’s straightforward to detect a collision. For example,
we can ‘detect’ when a sphere has collided with an infinite
plane. However, the collision response requires additional
information (i.e., more than a true or false) that includes the
position of the contact point on the plane, penetration depth,
and contact normal. In simulating a virtual environment, we
clearly need to be able to represent finite planes, and test for
collisions against them. A infinite plane, such as a wall or
roof, can be represented for the purposes of the physics engine
as two or more triangles. Consequently, we need an algorithm
to test whether our collision point on the infinite plane (which
the finite plane is part of) is within any of the triangles which
make up the finite plane.

There are well-known algorithms for testing whether a
point is inside a triangle - in fact, these algorithms are ap-
plicable to any two-dimensional convex shape. We will first
consider an algorithm for testing against a generic convex
shape, and then look at the more complex case of concave
shapes. Remember that a convex shape has no interior angles
greater than 180 degrees, whereas a concave shape has at
least one interior angle greater than 180 degrees. Examples
of convex shapes are a triangle, a rectangle, a circle, a slice
of pizza; examples of a concave shape are a star, a crescent
moon, a pizza with a slice missing.

2. Convex Shape Intersection
We require a test for whether a point is within a convex shape.
The diagram shows a shape consisting of five connected points,
with point A outside the shape, and point B inside the shape.

There are some intuitive tests based on drawing a line from
the test point to each of the vertices, and checking the size

Figure 2. Point Inside - Determining if a point is inside or
outside a convex shape.

of angles between those lines. If all of those angles are less
than π radians then the point must be inside a convex polygon.
Alternatively if the sum of all those angles is equal to 2π

radians then the point is inside the convex polygon. However,
if we were to proceed with this method, we do not have the
angle data readily to hand so it must be calculated - this would
involve calculating the arc-cosine of the dot product, which
is a very expensive thing to do computationally. It is either
very slow to calculate (compared to standard operations such
as addition and multiply), or it would require a large look-up
table which would be both heavy on memory and imprecise.
Consequently we require a more clever method.

The “clever” methods are based on the idea that a point
inside the polygon is consistently on the inside of each side
of the polygon. They take each edge of the polygon in turn
and calculate which side of that edge the test point is on. As
soon as the point is found to be on the outside of an edge then
it must be outside the polygon as a whole and the test is failed.
If the test point is found to be on the inside of all edges, then
it must be inside the polygon and an intersection has been
successfully identified. Note that this is only true for convex
polygons.

2.1 Cross Product Method
The first method we will look at involves using the cross
product to test whether the point is on the same side of a
polygon edge as another vertex of the polygon.

Consider the diagram, which shows the various vectors
used in testing whether points A and B are on the inside or
outside of the edge connecting vertex V1 to vertex V5. The
base vector from which we will perform the cross product
tests is that connecting V5 to V1; this vector is (V5−V1). We
are interested in the cross product of this vector and the vector
connecting the test point to V1. In the case of test point A that
is (A−V1), and for B that is (B−V1).

The vector resulting from this cross product will either
point out of the paper, or into the paper (as it must be or-
thonormal to the two vectors). It should be clear that the cross

www.xbdev.net/physics

Workshop Series: Collision Detection
(Narrow) — 3/6

Figure 3. Cross Product - Determining if a point is inside
or outside a convex shape using the cross product method.

product (V5−V1)× (B−V1) will be in the opposite direction
to the cross product (V5−V1)× (A−V1). So we can distin-
guish between a point outside the edge, and a point inside the
edge, based on the sign of this cross product. However we
need to know which sign (positive or negative) results from
the point on the inside.

This can be achieved by also testing where one of the other
vertices in the polygon resides with respect to the edge. In the
diagram we also consider vertex V3. We know that any vertex
of a convex polygon must be on the same side of an edge as
the whole polygon (i.e. all possible test points that lie within
the polygon). So the cross product (V5−V1)× (V3−V1) will
have the same sign as the test point within the polygon.

This test must be repeated for each edge of the polygon,
choosing a random other vertex as the basis for whether the
cross product must be negative or positive. As soon as an edge
test fails, the point must be outside of the polygon as a whole
and the rest of the tests can be abandoned. A big advantage of
this method is that the ordering of the vertices does not matter,
since the third vertex is used as a control.

2.2 Plane Equation Method
This algorithm exploits the popular plane equation by gener-
ating a normal for each side of the polygon, and determining
where the test point lies along those normals. If the point is
in the negative direction along the normal to one of the sides,
then it must be situated outside the polygon. In other words,
if the point lies in the positive direction of all edge-normals
then the point must be inside the polygon and an intersection
has occurred. In order for this test to be meaningful, the or-
dering of the vertices of the polygon must be correct, so that a
negative value of the normal is on the outside of the polygon.

In the example shown, it can be seen that both points
A and B lie in the positive direction of the normal for the
line between V2 and V3. However, point A is in the negative
direction of the normal of the line between V5 and V1, whereas
point B is in the positive direction. Consequently point A fails
the test for intersection, whereas point B passes.

Figure 4. Plane Equation Point Inside (Convex Shapes) -
Determining if a point is inside or outside a convex shape
using the plane equation method.

The C++ code for implementing this algorithm is:

1 bool PointInConvexPolygon (const Vector3 & TestPosition←↩
,

2 Vector3 ∗ convexShapePoints ,
3 int numPointsL) const
4 {
5 // Check if our test point is inside our convex shape
6 for (int i =0; i< numPoints ; ++i)
7 {
8 const int i0 = i;
9 const int i1 = (i +1)% numPoints ;

10
11 const Vector3 & p0 = convexShapePoints [i0];
12 const Vector3 & p1 = convexShapePoints [i1];
13
14 // We need two things for each edge , a point on the edge←↩

,
15 // and the normal
16 const Vector3 n = Cross (Vector3 (0 ,0 ,1) , Normalize (←↩

p0 −p1));
17
18 // Use the plane equation to calculate d, and determine if←↩

our
19 // point is on the positive or negative side of the plane (←↩

edge)
20 const float d = Dot (n, p0);
21
22 // Calculate which side our test point is on
23 // +ve for inside , −ve for outside , zero on plane
24 const float s = d − Dot (n, TestPosition);
25
26 if (s < 0.0 f)
27 {
28 // failed , so skip rest of the tests
29 return false ;
30 }
31 }
32 return true ;
33 }

This is a computationally efficient method for testing
whether a point is within a convex shape. Of course, not
all shapes in a game environment will be convex, so an ap-
proach is required for these more complex shapes. One option
is to break down a concave shape into a number of convex
shapes - if the test point is within any one of those component
shape then it must be within the overall shape. The natural

www.xbdev.net/physics

Workshop Series: Collision Detection
(Narrow) — 4/6

progression of such an approach is to break any shape down to
its component triangles (which may well match the triangles
used in building the object graphically, so the vertex data may
already be available). A triangle is the most simple convex
shape, so the test is applicable.

3. Concave Shape Intersection Part 1
There are more generic algorithms which can be used to test
whether a point lies within any shape, whether convex or con-
cave. Such algorithms are necessarily more computationally
expensive, and so should be utilised with care.

The algorithm which we will implement involves imag-
ining a line starting at the test point and ending a long way
from the polygonal shape. If that line crosses any edge of the
polygon an odd number of times, then the point must be inside
the polygon; if it crosses any edge an even number of times
then the point must lie outside the polygon. The diagram
shows a number of test points in or near a concave shape, as
well as the lines leading from the test point. The lines shown
are horizontal along the x-axis, but any line will surface as
long as its furthest point is sufficiently far from the test shape
to guarantee that it is outside the shape.

Figure 5. Concave Shape - Determining if a point is inside
or outside a concave shape.

It can be seen that the lines leading from points A and C
cross the polygon edges an odd number of times, whereas the
lines leading from points B, D and E cross the polygon edges
an even number of times. Further note that this method works
for shapes which have holes; point D is in a hole in the shape
and therefore not intersecting with it, and the test shows that
the line from point D crosses the edges twice resulting in it
being correctly identified as outside the shape.

In order to implement this algorithm, we will need a
method of testing whether two lines intersect.

4. Line-Line Intersection
The equation describing the line a from point P1 to point P2
can be written as

Pa = P1 +Ua(P2−P1) (1)

where Pa is any point along the line, and Ua is a factor of how
far along the line the point resides. At the start of the line Ua
is zero, so the point on the line is equal to P1; at the end of
the line Ua is one, so the point on the line is at P2. Similarly
the point half way along the line can be found by setting Ua
to 0.5 and so on. It should therefore be clear that any point on
the line will correspond to a Ua value between 0 and 1 - any
value beyond these limits will result in a point not on the line
between the two end points. This is the fact which we will
exploit in our algorithm for testing for line-line intersections.

Figure 6. Line-Line Intersection - Determining if two 3D
lines intersect.

Pa = P1 +Ua(P2−P1)

Pb = P3 +Ub(P4−P3)
(2)

and we are testing for a point where the two lines cross, i.e. a
point at which Pa and Pb are equal. So we are searching for
the values of Ua and Ub for which the following equation is
true:

P1 +Ua(P2−P1) = P3 +Ub(P4−P3) (3)

Hence, we solve for the unknowns Ua and Ub.
For a two dimensional case, we expand this equation to a

separate equation for the x and y values:

x1 +Ua(x2− x1) = x3 +Ub(x4− x3)

y1 +Ua(y2− y1) = y3 +Ub(y4− y3)
(4)

and solving for the unknowns Ua and Ub.
Remember that these values Ua and Ub give the distance

along each line at which the intersection occurs, measured as
a factor of the total length of the line. Consequently, if the
value of Ua is between 0 and 1, then the intersection occurs
on line a between P0 and P1, and similarly for Ub.

Any two infinitely long lines will intersect at some point,
unless they are parallel. For two parallel lines the value of the

www.xbdev.net/physics

Workshop Series: Collision Detection
(Narrow) — 5/6

denominator in the expressions for Ua and Ub is zero. Note
that the denominator is the same for both expressions, and
also recall that dividing by zero will result in a run-time error,
so this test must be built into the algorithm.
Hence, the two lines intersect if all three of these conditions
are met:
• 0≤Ua ≤ 1
• 0≤Ub ≤ 1
and the point of intersection can be found by plugging the
values of Ua and Ub back into the original line equations for
Pa and Pb.

In C++ the line-line intersection test is coded as:

Listing 1. Line-Line Intersection
1 class Line c
2 {
3 public :
4 Line c (const Vector3 & p0 , const Vector3 & p1)
5 { m p0 =p0; m p1 =p1; }
6 Vector3 m p0 ;
7 Vector3 m p1 ;
8 };
9

10 bool LineLineIntersection (const Line c & l0 ,
11 const Line c & l1 ,
12 float ∗ t0 = NULL , float ∗ t1 = NULL)
13 {
14 const Vector3 & p0 = l0. m p0 ;
15 const Vector3 & p1 = l0. m p1 ;
16 const Vector3 & p2 = l1. m p0 ;
17 const Vector3 & p3 = l1. m p1 ;
18
19 const float div = (p3.y−p2.y)∗(p1.x−p0.x)
20 − (p3.x−p2.x)∗(p1.y−p0.y);
21
22 // Nearly parallel lines
23 if (abs (div) < 0.000001 f)
24 {
25 return false ;
26 }
27
28 const float ta = ((p3.x−p2.x)∗(p0.y−p2.y)
29 − (p3.y−p2.y)∗(p0.x−p2.x)) / div ;
30 if (ta <0 || ta >1.0 f)
31 {
32 return false ;
33 }
34
35 const float tb = ((p1.x−p0.x)∗(p0.y−p2.y)
36 − (p1.y−p0.y)∗(p0.x−p2.x)) / div ;
37 if (tb <0 || tb >1.0 f)
38 {
39 return false ;
40 }
41
42 if (t0) (∗ t0)= ta;
43 if (t1) (∗ t1)= tb;
44
45 return true ;
46 }

5. Concave Shape Intersection Part 2
So now that we have our algorithm for testing whether two
finite lines intersect, we can easily implement the test for
whether a point lies within any polygon, whether concave
or convex. You will recall that the test involves taking a

line from the test point to a point guaranteed to be outside
the polygon, and counting the number of times it intersects
with the polygon’s sides. As we have vertex details for the
polygon, we know the positions of the start and end points of
the polygon edges, so the test in C is written as:

Listing 2. Concave Polygon Point Inside Test
1 bool InsideConcaveShape(const Vector3 ∗ shapePoints ,
2 const int numPoints ,
3 const Vector3 & testPoint)
4 {
5 int intersectionCount = 0;
6 // Count how many times we cross the line
7 for (int i =0; i< numPoints ; ++i)
8 {
9 const int i0 = i;

10 const int i1 = (i +1)% numPoints ;
11
12 const Vector3 & p0 = shapePoints [i0];
13 const Vector3 & p1 = shapePoints [i1];
14
15 bool intersect = LineLineIntersection (Line c (p0 , p1),
16 Line c (testPoint , testPoint + Vector3 (1000 ,1000 ,0)));
17
18 if (intersect)
19 {
20 intersectionCount ++;
21 }
22 }
23
24 // Even number of intersections means false
25 if (intersectionCount % 2 == 0)
26 {
27 return false ;
28 }
29 // We are inside the shape return true ;
30 }

6. Implementation

The aim of this practical session is to expand your physics
simulation to detect intersections between complex geometric
shapes. We will construct a set of algorithms which carry out
the required tests for polygonal collisions. To demonstrate
that the collision tests are working, we will add functionality
to the project which tests for when a launched sphere hits an
object in the scene, and halts its motion or explodes.

7. Summary

In this practical, we introduce the concept of narrow and
broad collision detection. We explain how to detect accurate
collision information for complex polygonal models. The
collision detection routines are two-tiered - narrow-phase and
broad-phase. This practical focuses on the more computation-
ally expensive collision detection routines which are typically
employed during the narrow-phase. The next practical, will
discuss how we subsequently expand upon our narrow-phase
implementation to include a broad-phase pass to reduce the
computational overhead.

www.xbdev.net/physics

Workshop Series: Collision Detection
(Narrow) — 6/6

Acknowledgements
We would like to thank all the reviewers for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this article more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the article clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with cloth effects. So if you can provide any advice,
tips, or hints during from your own exploration of simulation
development, that you think would be indispensable for a
student’s learning and understanding, please don’t hesitate to
contact us so that we can make amendments and incorporate
them into future practicals.

Recommended Reading
Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204

Kinematics and Dynamics Paperback. Kenwright. ISBN: 978-
1539595496

Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104

Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165

Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398

Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971

Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

www.xbdev.net/physics

	Introduction
	Collision Detection Algorithms
	Convex Shape Intersection
	Cross Product Method
	Plane Equation Method

	Concave Shape Intersection Part 1
	Line-Line Intersection
	Concave Shape Intersection Part 2
	Implementation
	Summary
	Acknowledgements

