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Abstract
We expand upon our collision detection algorithms discussed in the previous practical to make them suitable for real-time
simulations. We discuss the two-tiered approach which is typically taken in collision detection (i.e., broad-phase and
narrow-phase), while implementing a basic set of broad-phase detection routines.
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Figure 1. Narrow Phase - In broad phase, the task is to
avoid performing expensive computations for bodies that are
far away from each other. Simple bounding boxes can be
placed around each of the bodies, and simple tests can be
performed to avoid costly collision checking unless the boxes
overlap.
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Introduction
Overview A physics-based simulation system, typically con-
sists of three major sections:
• Simulate the motion of objects (e.g., particles or rigid

bodies) in the world
• Detect when two objects have collided or intersected
• Resolve any collisions to remove inter-penetration

In this practical, we discuss and implemented broad-phased
collision detection algorithms. While we are able to move
objects around the three-dimensional simulated world in a be-
lievable manner and detect precise collisions using a narrow-
phase approach, the majority of the time objects do not interact
with one another. Hence, we need a computationally efficient
system to organise and quickly cull which objects are possibly
intersecting.

Essentials The collision detection system is split into two
levels. The first level is a broad-phase approach that quickly
culls and removes objects that cannot be colliding, so we
are left with a reduced list of possibly colliding object. The
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second level takes the possible list of objects and performs
a more accurate set of checks to determine if objects are
colliding and the necessary contact information. We can run a
physical simulation using only a set of narrow-phase collision
algorithms - however, the simulation will be computationally
slow. The broad-phase level offers a number of smarter less
accurate speed-up techniques that make the overall solution
run at an acceptable frame-rate.

1. Organising Collision Detection
(Broad-phase and Narrow-phase)

Principles and Concepts The goal of the collision detec-
tion section is to identify which objects in our simulation have
intersected, so that we can push them apart. The sledgeham-
mer approach to this would be test every simulated object
in the world against every other simulated object. This is a
N2 problem and obviously it quickly becomes impractical for
even a relatively small game world.

Structure The collision detection routines will be much
more efficient if we can structure the code in a way which
ensures that the more complex algorithms are only applied to
pairs of objects which are likely to have intersected. Typically
a physics engine will divide the collision detection mechanism
into two phases:
• Broad-phase. Identify which pairs of objects need to be

tested for intersection.
• Narrow-phase. Carry out collision tests for each pair of

objects.

We will discuss each of these phases, before moving on to
the specifics of the detection algorithms that are commonly
employed.

2. Broad-phase
Imagine that the collision detection loop starts with a long
list of paired objects, consisting of all N2 possible pairings
in the simulated world. The purpose of the Broad-phase is
to provide a very quick culling procedure in order to “throw
out” as many of these pairings as possible, before moving on
to the more complex algorithms during narrow-phase. It is
analogous to the frustum culling and other techniques that
were introduced during the Graphics course to reduce the
number of graphical objects submitted for rendering.

Frustum culling may initially appear to be a good option
for use in broad-phase, especially as the work has already
been done for the rendering loop. However there are some
pretty big disadvantages to this approach, as we would not
be testing for collision between any objects out of view - for
example, if the player turns around there could well be a big
mess of intersecting objects lurking behind him.

A simple but effective approach is to carry out a quick
bounding box test between all object pairs. This method culls
any object pairs which have no chance of their extremities

being in contact. The algorithm and implementation of this
approach are discussed in detail in a later section of this practi-
cal. While this is a computationally cheap test per object pair,
it still must be carried out for every possible pairing (i.e. it is
still N2). A far more efficient routine would involve grouping
nearby objects together is some way, so that entire groups of
object pairs can be culled from the list at once.

2.1 BSP Trees and World Partition
There are various ways in which the objects can be grouped
to facilitate this faster culling during broad-phase. In general,
the techniques involve dividing the game world into a number
of sections, and identifying which section each object belongs
to. The assumption is that any object can only be colliding
with another object that is in the same section. The bounding
box test then just needs to be carried out between objects in
the same section. The problem then becomes a series of much
smaller N2 tests, where N is now the number of objects in
each group rather than the entire world. It should be noted that
any particular object can be in more than one world section
at the same time; this is perfectly acceptable and the object
just needs to be included in the loop for each section that it
encroaches on.

The main technique for achieving this goal is Binary
Search Partitioning (BSP) which recursively sub-divides the
world into convex sections. The Octree and Quadtree are com-
monly used examples of BSP trees. The octree approach splits
the world into progressively smaller cubes (i.e. it divides each
cube into eight equally sized smaller cubes - hence the name
octree). If a cube contains more than a threshold number of
objects, then it is split down into eight further cubes, and so
on recursively. The quadtree, as the name suggests, carries out
the same process but in two dimensions only, so each square
is split into four smaller squares.

2.2 Sort and Sweep
A further step in reducing the number of more expensive
object pair tests is to implement a Sort and Sweep algorithm.
The bounding volume of each object is projected onto a single
axis. If the bounding extents of a particular pair of objects do
not overlap then they can not possibly have collided, so that
pair is discarded from the list of possible intersecting pairs.

This is achieved by constructing a list of all bounding
markers (i.e. two per object, leading to a list of 2n items)
along a particular axis. The list is then sorted and traversed.
Whenever the start of a bounding volume is found (i.e. an a
value in the diagram), that object is added to the active list,
when the corresponding end of the bounding value is found
(i.e. a b value in the diagram) it is removed from the list.
When an object is added to the active list, any other objects
on the list are potential collision candidates, so an object pair
is created for the new object and each of the currently active
objects.

In the example diagram shown, the sort and sweep algo-
rithm creates a possible collision pair for the first and second
object, and another for the second and third object, but not for
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Figure 2. Sort and Sweep - Sorting along each of the
primary axes.

the first and third object. So, when the more computationally
expensive narrow-phase routines cycle through the possible
collisions, only two of the pairs are considered. Obviously ex-
panding this method to a larger area with many more objects
can greatly increase the number of potentially intersecting
pairs which are culled during broad-phase.

2.3 Narrow-phase
The list of N2 object pairs that must be checked for intersec-
tion should have been greatly reduced by the broad-phase
algorithms, leaving a list of object pairs which we believe
have a higher chance of having collided. The narrow-phase
algorithms test these individual pairs in more detail, so as to
identify which objects have actually intersected and need to
be moved apart.

The narrow-phase can operate at various different levels
of detail, depending on the circumstances. In many cases
a test of simplified collision shapes will be ample, but in
some cases the algorithms need to get down to the polygonal
level. The rest of this practical is focused on describing and
implementing the basic algorithms which can be used, either
for a simple narrow-phase test, or during the broad-phase. The
next practical then describes the more complex algorithms
used during narrow-phase for polygonal level collision tests

3. Collision Data
3.1 Collision Shape Data
In the first practical, in this series we discussed the neces-
sity for differentiating between the graphical model which is
displayed on screen (the vertex lists, texture data, etc.), and
the physical model which is simulated by the physics engine
(the size, shape and mass). The prime reason for taking this
approach is the efficiency benefits that it brings to the collision
detection and response algorithms.

If we need to check for collisions with every single poly-
gon of a complex graphical model, then we are faced with
a highly computationally intensive task. Even if this were

possible at the kind of real time frame-rate that we strive for,
the player is unlikely to notice such extreme attention to detail.
Instead, each game object is represented by a simple shape,
or a collection of simple shapes, for the purpose of physical
simulation. For example, a telegraph pole may be simulated as
a tall thin cuboid, while a hand grenade may be simulated as
a sphere. The more complex the shape that is used to simulate
an object, the more complex the collision algorithms need to
be, so care must be taken to use the appropriate simulation
shapes for each object in various circumstances during the
game.

3.2 Collision Response Data
The aim of the collision detection algorithms is not only to
flag when an intersection of two bodies has occurred, but
to provide information on how to resolve that intersection.
Basically we need to know where to move the bodies so that
there is no longer an intersection.

Figure 3. Collision - Resolving interpenetration

The diagram shows a rectangular block approaching a
static sphere with velocity V . At the end of the motion update
phase of the simulation, the collision detection algorithms
detect an intersection which must be resolved (i.e. the corner
of the block has penetrated the sphere). The information
which the collision detection algorithms must provide, in
order to resolve this intersection, is:
• The contact point P where the intersection has been de-

tected.
• The contact normal N which represents the direction

vector along which the intersecting object needs to move
to resolve the collision.

www.xbdev.net/physics
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• The penetration depth, i.e. the minimum distance along
the normal that the intersecting object must move.
In the example diagram, the collision response routine

has moved the block out along the normal of the sphere so
that it is no longer intersecting. The manner in which this
is achieved is addressed in the next practical; for now we
need to concentrate on how the physics engine recognised
that an intersection had occurred, and how it calculated the
information required by the collision response algorithms.

4. Collision Detection Algorithms
There are many different algorithms which can be used to
detect whether three-dimensional bodies are intersecting. As
ever, the more accurate routines are more computationally
expensive, so care should be taken when choosing which al-
gorithm to use in which circumstances. This will be discussed
further toward the end of this practical. First, let’s look at
some algorithms in more detail.

For many of these examples, we will use two dimensional
drawings to clarify the algorithms. The algorithms themselves
can be implemented in the same way in three dimensions,
but often discussing them in two dimensions, particularly
in relation to diagrams, is more intuitive. For example, the
diagram in the previous section is actually of a circle and
an oblong, although it purports to be a sphere and a block;
hopefully this approach will help clarify the concepts under
discussion.

4.1 Sphere-Sphere Collision
The simplest approach to collision detection is to represent
each object as a sphere centred on the object’s position vector,
and to calculate whether the two spheres intersect.

Figure 4. Sphere Sphere Collision - Detecting and
gathering contact information for a sphere-sphere collision

The algorithm to detect whether two spheres intersect is
very straightforward. If the distance between the centres of the
two spheres is less than the sum of the radii of the two spheres,
then an intersection has occurred: As the simulation knows
the location of the centre of the spheres, we use Pythagoras’
theorem to calculate the distance between them, and compare

the results to the sum of the radii. So an intersection has
occurred if

d < r1 + r2 (1)

where r1 and r2 are the sphere radius’ and c1 and c2 are the
sphere positions

d = |c0− c1|

=
√
(x2− x1)2 +(y2− y1)2 +(z2− z1)2

(2)

However, a square root is an expensive thing to compute,
so usually the comparison will be between the square of d
and the square of the sum of the radii. So an intersection has
occurred if:

d2 < (r1 + r2)
2 (3)

where

d = (x2− x1)2 +(y2− y1)
2 +(z2− z1)

2 (4)

The collision response data is also straightforward to cal-
culate; indeed most of the work has already been done in
the detection algorithm. The contact point P is on the vector
which connects the centre of the two spheres, which is also the
normal vector N, while the penetration distance p is simply
the difference between the sum of the radii and the distance
between the sphere centres (S1 and S2).

p = r1 + r2−d

N = |S1−S2|
P = S1 = N(r1− p)

(5)

In C++, the sphere-sphere collision test is written:

Listing 1. Sphere-Sphere Collision Detection
1 class Sphere c
2 {
3 public :
4 Sphere c ( const Vector3 & p, float r )
5 {
6 m pos = p;
7 m radius = r;
8 }
9 Vector3 m pos ;

10 float m radius ;
11 };
12 //←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−←↩

13 class CollisionData c
14 {
15 public :
16 Vector3 m point ;
17 Vector3 m normal ;
18 float m penetration ;
19 };
20 //←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−←↩

21
22 bool SphereSphereCollision ( const Sphere c & s0 ,
23 const Sphere c & s1 ,

www.xbdev.net/physics
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24 CollisionData c ∗ collisionData = NULL )
25 {
26 const float distSq = LengthSq ( s0. m pos − s1. m pos );
27 DBG ASSERT ( distSq > 0.00001 f );
28
29 const float sumRadius = (s0. m radius + s1. m radius );
30
31 if ( distSq < sumRadius ∗ sumRadius )
32 {
33 if ( collisionData )
34 {
35 collisionData −> m penetration = sumRadius − sqrtf (←↩

distSq );
36 collisionData −> m normal = Normalize ( s0. m pos −←↩

s1. m pos );
37 collisionData −> m point = s0. m pos − collisionData←↩

−> m normal
38 ∗ (s0. m radius − collisionData −> m penetration ∗0.5←↩

f );
39 }
40 return true ; // Collision
41 }
42 return false ; // No Collision
43 }

In the code the square root is calculated when computing
the collision data, even though it was earlier stated that this is
expensive computationally. The collision detection algorithm
does not use the square root; it compares the squares of the two
distances which is much faster. It is only after a collision has
been detected that we need to call on the more computationally
expensive square root. Most calls to the collision detection
routine will result in a false result (i.e. no intersection has
occurred); it is only the rare case of a positive result (i.e. an
intersection) which then triggers the more expensive collision
data calculation.

You may also notice that, in calculating the point of in-
tersection, only half of the penetration distance is used. This
is because this algorithm is intended to move both spheres
involved in a collision, so each sphere only needs to move
half of the overall penetration distance. Remember that the
physics engine loops through every object in the simulation,
before applying any collision corrections.

4.2 Axis-Aligned Bounding Box
The axis-aligned bounding box (AABB) method is also straight-
forward. It is typically used as a high level collision test to
decide whether it is worthwhile continuing with a more com-
plex test, or to trigger a piece of game logic. Each simulated
object is represented as a bounding box aligned with the axes
of the world, so each collision object has a position, as well
as a height, width and length.

The axes are considered in turn, and if there is an overlap
of all three axes then an intersection has occurred. An overlap
along a particular axis has happened if the distance between
the centres of the two boxes on that axis is less than half the
sum of the boxes’ lengths along that axis. So an intersection
has occurred if all three of these conditions is met:

|x2− x1|< 0.5(w1 +w2)

|y2− y1|< 0.5(h1 +h2)

|z2− z1|< 0.5(l1 + l2)
(6)

Figure 5. Axis Aligned Bounding Box (AABB) -
Detecting and gathering contact information for a AABB
collision

Importantly, as soon as one of these checks fails, the
algorithm can bail out as there can’t possibly be an intersection
unless there is overlap in all three axes.

This is a very cheap collision detection algorithm, as the
mathematics is very straightforward (only additions and sub-
tractions). However it is very limited - in particular the bound-
ing boxes need to be axis-aligned, so they can not rotate as
the object they represent moves around the world. Also the
collision response data is not generated by the algorithm. Con-
sequently this algorithm tends to be used only when we need
a quick binary decision on whether a collision is likely, before
moving on to a more complex collision detection algorithm,
or making a high-level game logic decision, such as detecting
when the player has entered a new region of the world, or some
game logic needs to be triggered by an invisible bounding
box.

In C++, the Axis Aligned Bounding Box collision test is
written:

1 bool AABBCollision ( const Box c & cube0 ,
2 const Box c & cube1 )
3 {
4 // Test along the x axis
5 float dist = cube0.pos .x − cube1.pos.x;
6 float sum = ( cube0.halfdims.x + cube1.halfdims.x);
7 // If the dist , is less than the sum , we have an overlap
8 if ( dist <= sum )
9 {

www.xbdev.net/physics



Workshop Series: Collision Detection
(Broad) — 6/7

10 dist = cube0.pos.y − cube1.pos.y;
11 sum = ( cube0.halfdims.y + cube1.halfdims.y);
12 if ( dist <= sum )
13 {
14 float dist = cube0.pos.z − cube1.pos.z;
15 float sum = ( cube0.halfdims.z + cube1.halfdims.z);
16 if ( dist <= sum )
17 {
18 // Overlap in all three axes so there is an intersection
19 return TRUE ;
20 }
21 }
22 }
23 return FALSE ;
24 }

You may notice that the Box class stores the half dimen-
sions for the height, width and length; this is to avoid multi-
plying by 0:5 every time the algorithm is used, which is again
an efficiency measure.

4.3 Sphere-Plane Collision
Surfaces within the environment are most efficiently simulated
as planes in the physics engine. Hence a simple physics
simulation of a game would entail representing the game
objects as spheres, and the surfaces of the environment (e.g.,
floors and walls) as planes. We therefore require a method
for detecting when a sphere has intersected a plane. You will
recall from the practical on frustum culling, that the plane
equation can be used to calculate how far a point is from an
infinite plane. Obviously if this distance is less than the radius
of a sphere, then the sphere intersects the plane.

The plane equation is:

Ax+By+Cz+D = 0 (7)

where (A,B,C) is the normal to the plane, D is the distance of
the plane from the origin, and (x, y, z) is the position of the
test point.

Figure 6. Sphere-Plane - Detecting and gathering contact
information for a sphere-plane collision

Consequently, a sphere at position S of radius r, intersects
a plane with normal N at distance d from the origin if

N ·S+d < r (8)

where N:S is the dot product of N and S. Note that N is a
normal and therefore must be of length 1 (i.e. a unit vector),
whereas S is simply the position of the centre of the sphere (ie
the vector from the origin to the sphere’s centre) and therefore
not a unit vector.

The Plane class which you have used during the graphics
practical course contains a plane-sphere intersection test. The
C code is repeated here:

1 bool Plane :: SphereInPlane ( const Vector3 & position ,
2 float radius ) const
3 {
4 if ( Vector3::Dot ( position , normal ) + distance <= −←↩

radius )
5 {
6 return false ;
7 }
8 return true ;
9 }

Again most of the calculation of the collision response
data has already been carried out. The penetration p is simply
the difference between the radius and the distance between the
sphere centre and the plane. The collision normal is the normal
of the plane. The contact point P is calculated by taking the
sphere position, and adding a vector along the direction of the
normal equal to the distance between the sphere centre and
the plane. Mathematically:

p = r− (N ·S+d)

P = S−N(r− p)
(9)

So expanding the SphereInPlane method to return the
collision response data:

1 bool Plane::SphereInPlane ( const Vector3 & position ,
2 float radius ,
3 CollisionData c ∗ collisionData = NULL ) const
4 {
5 float separation = Vector3::Dot ( position , normal ) +←↩

distance;
6 if ( separation <= −radius )
7 {
8 return false ;
9 }

10 if ( collisionData )
11 {
12 collisionData−>m penetration = radius − separation ;
13 collisionData−>m normal = normal ;
14 collisionData−>m point = s0.m pos − normal ∗←↩

separation ;
15 }
16 return true ;
17 }

The plane equation, and the sample code is based on
testing for intersection with an infinite plane. Of course, even
a simple game environment can’t be represented exclusively
by infinite planes. The following practical will introduce
techniques which can be used to test for collisions between
less generic shapes.

www.xbdev.net/physics
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5. Implementation
The aim of this practical session is to expand your physics en-
gine to detect intersections between simple geometric shapes -
namely spheres and planes. We will construct a set of algo-
rithms which carry out the required tests for sphere-sphere
and sphere-plane collisions. To demonstrate that the collision
tests are working, we will add functionality to the project
which tests for when a launched sphere hits a floor or wall,
and halts its motion. We will further test for when a sphere
hits another sphere and cause the two spheres to vanish.

6. Summary
The collision detection routines are two-tiered - broad-phase
and narrow-phase. In this practical, we have introduced the
concept of broad-phase collision detection that works in con-
junction with the narrow-phase system. Once a collision is
detected, the second step is to respond to that by moving
the intersecting objects apart. This practical has dealt with
the quick collision detection routines which are typically em-
ployed during broad-phase.
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