
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Collision Response
(Penalty)
Benjamin Kenwright1*

Abstract
We discuss Penalty Methods for collision response. This is achieved by introducing simulated springs between bodies, which
push them apart through forces and accelerations. The method is shown to be useful for soft bodies and cloth simulations.

Keywords
Collision Response, Interactive, Springs, Intersection, Sphere-Sphere, Box-Plane, Axis Aligned Bounding Box, Broad, Narrow,
Physics, Penetration Depth, Contact Normal, Real-Time, Video Games, Interactive, Classical Mechanics, C++

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Figure 1. Penalty - A penalty method replaces a
constrained optimization problem by a series of
unconstrained problems whose solutions ideally converge to
the solution of the original constrained problem. The
unconstrained problems are formed by a set parameter
measured by the violation of the constraints.

Contents

Introduction 1

1 Springs 1

2 Springs for Collision Response 2
2.1 Implementation of Springs for Collision Response . . . 2

3 Soft Bodies 3
3.1 Implementation of a Ball-Spring Chain 4

4 Summary 4

Acknowledgements 5

Introduction
Overview In this practical, we introduce the penalty-based
approach for resolving collisions; we directly affect the ac-
celeration of the colliding bodies by applying a force to push
them apart. This is known as the “Penalty Method”. In
essence, the penalty-based approach resolves collisions by
introducing a coiled spring between the two bodies at the
contact point; the force of the spring expanding pushes the
bodies apart. Obviously, we are not talking about adding ac-
tual springs into the simulation, and rendering them, but we
utilise the physical laws of springs to achieve a realistic effect
for moving intersecting objects apart.

This approach becomes especially useful when we apply
it to soft bodies. So far, we have only considered rigid body
simulation systems (i.e. the shape of each object has remained
constant while its position and orientation has varied); even
animated characters consist of a hierarchical structure of rigid
bodies as far as the physics simulation is concerned. A soft
body, on the other hand, can change its shape. A classic
example of a soft body is cloth - imagine a curtain blowing
in the breeze, a football net reacting to a ball kicked into it,
or a superhero’s cape flowing behind as she runs. Soft bodies
are typically modelled as a network of interconnected nodes,
and the connections between those nodes are simulated by the
physics engine as springs.

Workshop Series: Collision Response
(Penalty) — 2/5

1. Springs
Principles and Concepts In the real world, a spring tends
to be a coiled up strand of metal. We are interested in simulat-
ing the properties of a spring when it is used to connect two
objects; these properties can be summarised as
• When the spring is compressed it forces the two objects

apart
• When the spring is elongated it forces the two objects

toward one another
Basically the spring continually tries to return to its rest

length. This is expressed mathematically as:

F =−kx (1)

where k is the spring constant (a measure of how difficult the
spring is to stretch), x is the difference between the rest length
of the spring and its current length, and F is the ensuing force
at each end of the spring. The equation is known as Hooke’s
Law of Elasticity, which you probably studied during Physics
classes in school. Note, the negative sign, which shows that
this is a restorative force - i.e., it is trying to pull the spring
back to its equilibrium length. A higher value of the spring
constant k means the spring requires a higher force to stretch
or compress it; more to the point for our purposes, a higher
value of k will result in a greater force pushing our intersecting
objects apart. As ever, for the purposes of our physics engine,
the distance and force in the equation are three dimensional
vectors, but we will discuss them in simpler terms for clarity.

If this were the sum total of our spring simulation, then the
objects which are connected by the spring would continue to
bounce back and forth for ever. This is, of course, unrealistic
and not the intention of the simulation. In the real world, an
object on the end of a spring will gradually slow down and
come to a rest. Hence, we need to introduce a damping factor
into our algorithm.

The damping factor is higher at larger velocities of the
object, and a proportional force is introduced via the damping
coefficient c. The equation for our spring force now becomes:

F =−kx− cv (2)

where v is the velocity of the object along the axis of the
spring and c is the damping factor.

So we have a simple equation which describes how a
spring can force two objects apart, or draw them together,
while taking into account a realistic damping factor to bring
the objects to rest.

2. Springs for Collision Response
We will again consider the simple case of two colliding spheres
from the previous practical. Our intention here is to address
any intersection identified in the collision response routines
by attaching the intersecting objects to either end of a virtual
spring, and then rely on the resulting spring forces to push the
objects back apart.

Figure 2. Contact - Contact information necessary to
resolve the collision (i.e., relative velocity, contact position,
penetration depth, and contact normal).

We again have the three pieces of intersection information
from the collision detection routines; namely the contact point,
the contact normal n and the penetration depth d.

The relative velocity is again simple to calculate (vab =
va−vb), and we are interested in the component of the relative
velocity in the direction of the collision normal (i.e. the dot
product of vab and n. The coefficient of elasticity is k and the
damping factor is c, giving the equation:

F =−kd− c(n · vab) (3)

An equal and opposite force is applied to each object.
However, often one of the objects attached to the spring is
actually a fixed point (for example, part of the environment),
in which case the force on that end of the spring is ignored,
and only the free object is affected.

Remember that this method results in a force, which is
then applied in the same way as other game forces - i.e. the
resulting acceleration is calculated from F = ma. The impulse
method resulted in a direct change to velocity, so the mass of
the objects was taken into account in calculating the impulse;
with the penalty method the mass is taken into account when
calculating the acceleration from the force.

The choice of values for the two coefficients k and c is
vital, and can result in a range of desired collision response
types. The higher the value of the damping factor c, the
less bouncy the collision, while the higher the value of the
elasticity coefficient, the more solid the objects will feel. For
example, a low value of k and a low value of c will feel like
a trampoline (a big bounce on a soft surface), while a low
value of k with a high value of c will feel more like a swamp
(sinking into a soft surface). You will need to experiment with
values to tune the effect that you want.

2.1 Implementation of Springs for Collision Response
This section contains C++ code for simulating a spring class
for collision response. Note, the code assumes that the rigid
body class includes a method for applying a force to the object,

www.xbdev.net/physics

Workshop Series: Collision Response
(Penalty) — 3/5

and this method is used as the standard way for moving objects
around in the force-based physics simulation.

Listing 1. Spring Class
1 class Spring c
2 {
3 public :
4 RigidBody c ∗ m rbA ;
5 RigidBody c ∗ m rbB ;
6 Vector3 m localPosA ;
7 Vector3 m localPosB ;
8 float m length ; // rest length
9 float m ks ; // stiffness

10 float m kd ; // damping
11
12 Spring c (RigidBody c ∗ rbA , Vector3 localPosA ,
13 RigidBody c ∗ rbB , Vector3 localPosB)
14 {
15 m ks = 30.0 f; // default
16 m kd = 10.0 f;
17
18 m rbA = rbA ;
19 m rbB = rbB ;
20 m localPosA = localPosA ;
21 m localPosB = localPosB ;
22
23 // get the actual world position of the springs
24 Vector3 p0 = Transform (m localPosA , m rbA .←↩

GetOrientation ()) +
25 m rbA . GetPosition ();
26 Vector3 p1 = Transform (m localPosB , m rbB .←↩

GetOrientation ()) +
27 m rbB . GetPosition ();
28 m length = (p1 − p0). Length ();
29 }
30
31 void Update (float dt)
32 {
33 // Work out the world pos of each spring point
34 Vector3 p0 = Transform (m localPosA , m rbA .←↩

GetOrientation ()) +
35 m rbA . GetPosition ();
36 Vector3 p1 = Transform (m localPosB , m rbB .←↩

GetOrientation ()) +
37 m rbB . GetPosition ();
38
39 // Work out the err
40 float err = (p1 − p0).Length () − m length ;
41
42 Vector3 linVelA = m rbA −> GetLinearVelocity ();
43 Vector3 linVelB = m rbB −> GetLinearVelocity ();
44
45 Vector3 forceDirection = Vector3.Normalise (p1 − p0);
46
47 // Calculate the force from the spring (inc damping)
48 Vector3 force = forceDirection (err ∗ m ks −
49 Vector3 .Dot (forceDirection , (linVelA − linVelB) ∗←↩

m kd);
50
51 m rbA −> AddForce (p0 , force ∗ 0.5 f);
52 m rbB −> AddForce (p0 , −force ∗ 0.5 f);
53 }
54 };

The penalty method for collision response in the physics
simulation is more straightforward to implement than the
Impulse method, and it has the advantage of directly utilising
the force-based movement implementation. However great
care must be taken so that the results don’t feel as though
there are actual springs connecting things together; without
that care objects may bounce around in an unrealistic manner.

3. Soft Bodies
So far we have simulated each object as a single item in the
simulation (either a particle or a rigid body), or as a hierarchi-
cal skeleton of items which are treated by the physics engine
as distinct entities. This approach is perfect for most entities
which are to be simulated in a game, as we do not anticipate
that many objects will be required to change shape as the sim-
ulation progresses. Remember that a rigid body can change
it’s position and orientation, but not its shape. In the cases
when we do require a body to change its shape, we need a
new approach known as soft body simulation - springs can be
utilised to provide soft-bodies in the physics simulation.

A soft body can be modelled as a network of nodes inter-
connected by simulated springs. The diagram shows a piece
of cloth simulated in this way.

The rest position of the cloth has no tension in the springs,
so the mesh is evenly spaced. Applying a force to one part
of the mesh will cause the surrounding springs to stretch, and
to pull the connected nodes which in turn stretch the next
layer of springs attached to them. As the force is removed
the springs contract and bring the overall mesh back to its
rest position. A three dimensional deformable object (such as
a jelly) can be simulated similarly, with a three dimensional
array of nodes. It is also common to use a one-dimensional
set of noes to simulate a rope, a chain or even a strand of hair.

A common approach in simulating deformable objects
using this spring-based soft body solution is to match the
graphical model to the simulated model. That is to say that
each vertex of the graphical model is represented by a node
in the physical model, and each edge in the graphical model
coincides with a spring.

Figure 3. Soft Body Springs - Constructing soft body
structures using springs (e.g., cloths and deformable objects).

It should be stressed that soft bodies are extremely ex-
pensive items to simulate both in terms of computation and
memory. Each spring connecting each node must be simu-
lated, which is obviously considerably more computationally
expensive than treating the object as a single entity as happens
in rigid body simulation. Similarly, as the mesh of springs and
nodes must be stored in a data structure, there is also a greater
cost to memory. For these reasons, soft body simulation tends
to be used for specific instances in games, which give maxi-

www.xbdev.net/physics

Workshop Series: Collision Response
(Penalty) — 4/5

mum impact to the player. It is also worth pointing out that
this approach is not really based on any kind of real-world
physics; it is a technique for providing some behaviour which
looks and feels good in the game simulation (i.e. in reality a
cloth isn’t a network of connected springs).

There are instances where a body needs to deform, but not
return to its original shape (for example a crumple zone on
a car) - in those instances the spring approach is not suitable
as the basic nature of a spring is that it is constantly trying
to return to its rest length. In the instance of the car crumple
zone, the bodywork is still modelled as a network of inter-
connected nodes, and the simulation knows that they have
freedom of movement along a particular axis in one direction
only. Consequently applying a sufficiently high force will
cause the nodes to squash up together, but removing the force
does not allow the nodes to revert to the uncompressed state.

3.1 Implementation of a Ball-Spring Chain
The code sample shows how to implement a chain of nodes
connected by springs with freedom to move in two dimen-
sions.

1 // Gravity acceleration
2 const static float G = −9.8f;
3
4 // Mass
5 const static float MASS = 10.0 f;
6
7 // Spring parameter in Hook ’s law
8 const static float KS = 50.0 f;
9

10 // Velocity damping parameter
11 const static float KD = 1.0 f;
12
13 // Time slice
14 const static float DT = 0.1 f;
15
16 const static int MAXNUMBALLS = 7;
17
18 // Spring demo class − whole demo is encapsulated within←↩

this class
19 class SpringDemo c
20 {
21 DArray < Vector3 > m ballPosition ;
22 DArray < Vector3 > m ballVelocity ;
23 DArray < Vector3 > m ballForce ;
24
25 public :
26 SpringDemo c ()
27 {
28 // Create our balls
29 for (int i=0; i< MAXNUMBALLS; ++i)
30 {
31 m ballPosition.Push (Vector3 (0 ,0 ,0));
32 m ballForce.Push (Vector3 (0 ,0 ,0));
33 m ballVelocity.Push (Vector3 (0 ,0 ,0));
34 }
35
36 // Fix first ball
37 m ballPosition[0].x = 100;
38 m ballPosition[0].y = 100;
39
40 // Fix last ball
41 m ballPosition[m ballPosition.Size()−1].x = 500;
42 m ballPosition[m ballPosition.Size()−1].y = 100;
43
44 // Initialize moving balls
45 for (int i=1; i< m ballPosition.Size()−1; ++i)

46 {
47 m ballPosition [i].x = RandomFloat (0, 450);
48 m ballPosition [i].y = RandomFloat (0, 90);
49 }
50 }
51
52 void DrawBalls ()
53 {
54 for (int i = 0; i< m ballPosition.Size (); ++i)
55 {
56 DrawCircle2D (m ballPosition [i], 10.0f);
57 }
58 // Draw springs
59 for (int i=0; i< m ballPosition.Size()−1; ++i)
60 {
61 DrawLine2D (m ballPosition [i], m ballPosition [i +1]);
62 }
63 }
64
65
66 // Calculate forces on each node
67 void RecalculateBallPosition ()
68 {
69 // Calculate the spring force
70 for (int i = 1; i< m ballForce.Size ()−1; ++i)
71 {
72 // Force from the left ball and right ball
73 Vector3 f0 = KS ∗ (m ballPosition [i]
74 − m ballPosition [i −1]);
75 Vector3 f1 = KS ∗ (m ballPosition [i]
76 − m ballPosition [i +1]);
77 Vector3 F = f0 + f1;
78 m ballForce [i] = F − KD∗ m ballVelocity [i];
79 m ballForce [i].y −= MASS ∗G;
80 }
81
82 // Calculate the new position of each nodes
83 for (int i = 1; i< m ballPosition.Size ()−1; ++i)
84 {
85 // accelerations
86 Vector3 a = m ballForce [i] ∗ (1.0 f / MASS);
87
88 // velocities
89 m ballVelocity [i] += a ∗ DT;
90
91 // positions
92 m ballPosition [i] += m ballVelocity [i] ∗ DT;
93 }
94 }
95
96 public :
97 // Game state is kept here in the Draw update
98 // for simplicity , we assume a fixed
99 // timestep update call (so the function is

100 // always called at the same interval)
101 void Draw ()
102 {
103 RecalculateBallPosition ();
104
105 DrawBalls ();
106 }
107 }; // End SpringDemo c()

4. Summary
In this practical, we have introduced an alternative approach
to collision response in the form of penalty methods, i.e. a
method which directly affects the accelerations of colliding
objects in order to resolve that collision. This was achieved by
simulating a spring between the two bodies. It has also been
shown how this approach can be used to simulated soft bodies

www.xbdev.net/physics

Workshop Series: Collision Response
(Penalty) — 5/5

(i.e. deformable objects which change shape when an external
force is applied, but try to revert to their original shape).

We have discussed the overall aims and practicalities of
a physics simulation for games, and described how a force-
based Newtonian simulation is suitable to our needs. We
have used numerical integration to move our objects around
based on the Newtonian forces acting upon them. Once all
the objects have been moved for a specific time step, we have
looked at how to detect whether there have been any collisions
or intersections; this work was divided into the broadphase
for quickly identifying possible collisions, and the narrow-
phase for precisely identifying actual intersections. e have
then used that information to perform some collision response,
and investigated two approaches, namely the impulse method
and the penalty method. The end result of the practical se-
ries should be a functioning physics engine which simulates
both linear and angular interaction of the game objects and
environment.

Figure 4. Overview - Recap of update sequence for
collisions and constraints.

Acknowledgements
We would like to thank all the reviewers for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this article more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the article clear to follow?
• Are the examples and tasks achievable?

• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with cloth effects. So if you can provide any advice,
tips, or hints during from your own exploration of simulation
development, that you think would be indispensable for a
student’s learning and understanding, please don’t hesitate to
contact us so that we can make amendments and incorporate
them into future practicals.

Recommended Reading
Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204

Kinematics and Dynamics Paperback. Kenwright. ISBN: 978-
1539595496

Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104

Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165

Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398

Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971

Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

www.xbdev.net/physics

	Introduction
	Springs
	Springs for Collision Response
	Implementation of Springs for Collision Response

	Soft Bodies
	Implementation of a Ball-Spring Chain

	Summary
	Acknowledgements

