www.xbdev.net
xbdev - software development
Friday May 9, 2025
Home | Contact | Support | Fractals Natures pattern... | Fractals Natures pattern...
     
 

Fractals

Natures pattern...

 

Fractals > Interpolation and Extrapolation of Fractals


Interpolating and extrapolating fractals is brilliant! While it offers a means to create visually captivating transitions and extend fractal patterns into uncharted territories, it also raise interesting questions about fidelity and integrity of the underlying fractal algorithms (stability problems or produce non-fractal like results).

One aspect of debate centers around the preservation of fractal characteristics during interpolation and extrapolation. Fractals are known for their self-similarity at different scales, and any manipulation that disrupts this property risks diluting the essence of the fractal. Interpolating between two fractal patterns, for instance, may introduce artifacts or smooth out intricate details, potentially compromising the richness and complexity inherent in the original fractals. Similarly, extrapolating beyond the known boundaries of a fractal may lead to regions that lack the self-similarity crucial for maintaining its fractal nature, resulting in visually striking but potentially less meaningful creations.

Interpolating and extrapolating fractals is useful tool for creativity. As it extends fractal patterns beyond their original boundaries or interpolating between different sets - for instance, it will let you discover hidden symmetries and explore vast fractal landscape. The different techniques can serve as tools for experimentation and discovery, encouraging and fostering innovation in fields ranging from computer graphics to music.

Interpolating Between Mandelbrot and Julia set


Generating fractal patterns in JavaScript can be achieved using various algorithms like the Mandelbrot set or the Julia set.

Let's generate two different fractal patterns using the Mandelbrot set and the Julia set, and then interpolate between them.

The Javascript code below generates a Mandelbrot set and then interpolates towards a specific Julia set by gradually changing the complex constant used in the Julia set iteration formula. This gives the impression of transitioning between two different fractal patterns.

<html lang="en">
<
head>
    <
meta charset="UTF-8">
    <
meta name="viewport" content="width=device-width, initial-scale=1.0">
    <
title>Fractal Interpolation</title>
    <
style>
        
canvas {
            
border1px solid black;
        }
    </
style>
</
head>
<
body>
    <
canvas id="canvas" width="600" height="400"></canvas>
    <
script>
        const 
canvas document.getElementById('canvas');
        const 
ctx canvas.getContext('2d');

        
// Function to generate the Mandelbrot set
        
function mandelbrot(x0y0maxIter) {
            
let x 0;
            
let y 0;
            
let iter 0;
            while (
<= && iter maxIter) {
                
let xtemp x0;
                
y0;
                
xtemp;
                
iter++;
            }
            return 
iter maxIter;
        }

        
// Function to generate the Julia set
        
function julia(xycRealcImaginarymaxIter) {
            
let iter 0;
            while (
<= && iter maxIter) {
                
let xtemp cReal;
                
cImaginary;
                
xtemp;
                
iter++;
            }
            return 
iter maxIter;
        }

        
// Draw Mandelbrot set
        
function drawMandelbrot() {
            const 
maxIter 100;
            for (
let i 0canvas.widthi++) {
                for (
let j 0canvas.heightj++) {
                    const 
x0 = (canvas.width 2) * canvas.width;
                    const 
y0 = (canvas.height 2) * canvas.height;
                    const 
brightness mandelbrot(x0y0maxIter);
                    const 
color Math.floor(255 brightness);
                    
ctx.fillStyle = `rgb(${color},${color},${color})`;
                    
ctx.fillRect(ij11);
                }
            }
        }

        
// Draw Julia set
        
function drawJulia(cRealcImaginary) {
            const 
maxIter 100;
            for (
let i 0canvas.widthi++) {
                for (
let j 0canvas.heightj++) {
                    const 
= (canvas.width 2) * canvas.width;
                    const 
= (canvas.height 2) * canvas.height;
                    const 
brightness julia(xycRealcImaginarymaxIter);
                    const 
color Math.floor(255 brightness);
                    
ctx.fillStyle = `rgb(${color},${color},${color})`;
                    
ctx.fillRect(ij11);
                }
            }
        }

        
// Interpolate between Mandelbrot and Julia sets
        
function interpolateFractals(t) {
            const 
cReal = -0.8 * (0.8);
            const 
cImaginary 0.156 * (-0.156);
            
drawJulia(cRealcImaginary);
        }

        
// Main function
        
function main() {
            
drawMandelbrot();
            
// Interpolate between Mandelbrot and Julia sets
            
for (let t 0<= 1+= 0.01) {
                
setTimeout(() => {
                    
ctx.clearRect(00canvas.widthcanvas.height);
                    
interpolateFractals(t);
                }, 
1000);
            }
        }

        
main();
    </
script>
</
body>
</
html>



interpolating fractals

interpolating fractals

interpolating fractals

interpolating fractals






















 
Advert (Support Website)

 
 Visitor:
Copyright (c) 2002-2025 xbdev.net - All rights reserved.
Designated articles, tutorials and software are the property of their respective owners.